This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120915 #3 Mar 30 2012 18:36:58 %S A120915 1,4,20,116,720,4656,30996,210896,1459536,10239796,72651184,520328112, %T A120915 3756512912,27307671040,199705789248,1468209751856,10844681408064, %U A120915 80437588353600,598867568439828,4473784063109904,33524058847464912 %N A120915 G.f. satisfies: A(x) = C(2x)^2 * A(x^3*C(2x)^4), where C(x) is the g.f. of the Catalan numbers (A000108). %C A120915 Column 0 of triangle A120914 (cascadence of (1+2x)^2). %e A120915 A(x) = 1 + 4*x + 20*x^2 + 116*x^3 + 720*x^4 + 4656*x^5 + 30996*x^6 +... %e A120915 = C(2x)^2 * A(x^3*C(2x)^4) where %e A120915 C(2x) = 1 + 2*x + 8*x^2 + 40*x^3 + 224*x^4 + 1344*x^5 + 8448*x^6 +... %e A120915 and C(x) is g.f. of the Catalan numbers (A000108): C(x) = 1 + x*C(x)^2. %o A120915 (PARI) {a(n)=local(A=1+x,C=(1/x*serreverse(x/(1+4*x+4*x^2+x*O(x^n))))^(1/2)); for(i=0,n,A=C^2*subst(A,x,x^3*C^4 +x*O(x^n)));polcoeff(A,n,x)} %Y A120915 Cf. A120914, A120916 (square-root), A120917, A120918; A000108; variants: A092684, A092687, A120895, A120899, A120920. %K A120915 nonn %O A120915 0,2 %A A120915 _Paul D. Hanna_, Jul 17 2006