A287692 Triangle read by rows: T(n,k) is the greatest difference between prime factors among squarefree numbers A002110(n) <= m <= (A002110(n+1)-1) such that A001221(m) = n and m is divisible by A002110(k).
3, 2, 5, 2, 3, 9, 2, 3, 5, 18, 2, 2, 4, 7, 30, 2, 2, 3, 5, 10, 42, 2, 2, 3, 4, 6, 13, 60, 2, 2, 3, 4, 5, 8, 17, 77, 2, 2, 3, 3, 4, 6, 10, 22, 113, 2, 2, 2, 3, 4, 5, 8, 12, 25, 145, 2, 2, 2, 3, 4, 5, 6, 9, 15, 32, 179, 2, 2, 2, 3, 4, 4, 6, 7, 11, 19, 36, 229
Offset: 1
Examples
Triangle begins: n\k| 1 2 3 4 5 6 7 8 9 10 11 12 --------------------------------------------------------- 1 | 3 2 | 2 5 3 | 2 3 9 4 | 2 3 5 18 5 | 2 2 4 7 30 6 | 2 2 3 5 10 42 7 | 2 2 3 4 6 13 60 8 | 2 2 3 4 5 8 17 77 9 | 2 2 3 3 4 6 10 22 113 10 | 2 2 2 3 4 5 8 12 25 145 11 | 2 2 2 3 4 5 6 9 15 32 179 12 | 2 2 2 3 4 4 6 7 11 19 36 229 ... Let p_n# = A002110(n). For n = 2, there are A287484(2) = 7 squarefree numbers p_2# <= m <= (p_3# - 1) such that omega(m) = n. These are {6, 10, 14, 22, 26, 15, 21}. These numbers m have A287352(m) = {{1,1}, {1,2}, {1,3}, {1,4}, {1,5}, {2,1}, {2,2}} respectively; the largest values in both positions are {2,5}, thus row n = 2 of a(n) is {2,5}.
Programs
-
Mathematica
f[n_] := If[n == 0, {{1}}, Block[{P = Product[Prime@ i, {i, n}], lim, k = 1, c, w = ConstantArray[1, n]}, lim = Prime[n + 1] P; {w}~Join~Reap[Do[w = If[k == 1, MapAt[# + 1 &, w, -k], Join[Drop[MapAt[# + 1 &, w, -k], -k + 1], ConstantArray[1, k - 1]]]; c = Times @@ Map[If[# == 0, 1, Prime@ #] &, Accumulate@ w]; If[c < lim, Sow[w]; k = 1, If[k == n, Break[], k++]], {i, Infinity}] ][[-1, 1]] ] ]; Table[Max /@ Transpose@ f@ n, {n, 14}] // Flatten (* Michael De Vlieger, Jun 15 2017 *)
Comments