This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120943 #12 Jul 08 2023 18:41:49 %S A120943 3,5,8,10,11,12,13,14,15,16,18,19,21,22,23,25,27,28,30,31,32,34,39,40, %T A120943 41,43,44,45,46,48,50,51,53,54,57,58,59,60,62,63,65,66,67,69,73,76,77, %U A120943 80,81,82,83,84,87,88,90,92,93,94,96,97,98,99,100,102,103,104,109,111 %N A120943 Numbers n such that merging first n digits in decimal expansion of Pi (A000796) gives a squarefree composite number. %C A120943 Note that the indices here differ by one from those in WIFC (World Integer Factorization Center), N = int(pi*10^(n)), by Hisanori Mishima. Therefore to H. Mishima's index add one. %H A120943 Dario Alejandro Alpern, <a href="https://www.alpertron.com.ar/ECM.HTM">Java Applet: Factorization using the Elliptic Curve Method.</a> %H A120943 H. Mishima, <a href="https://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/de_pi000.htm">Factorizations of many number sequences</a> %H A120943 H. Mishima, <a href="https://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/de_pi100.htm">Factorizations of many number sequences</a> %F A120943 Numbers n such that A011545(n) is squarefree. %e A120943 n=3: first 3 digits give 314=2*157 %e A120943 n=5: first 5 digits give 31415=5*61*103 %e A120943 n=8: 31415926=2*1901*8263 %e A120943 n=10: 3141592653=3*107*9786893 %e A120943 n=11: 31415926535=5*7*31*28954771 %e A120943 n=12: 314159265358=2*157079632679, etc. %t A120943 (* first do *) Needs["NumberTheory`NumberTheoryFunctions`"] (* then *) p = RealDigits[Pi, 10, 100][[1]]; fQ[n_] := Block[{fd = FromDigits@ Take[p, n]}, !PrimeQ@fd && SquareFreeQ@fd]; Select[Range@81, fQ@# &] (* _Robert G. Wilson v_ *) %t A120943 Module[{nn=120,p,c},p=RealDigits[Pi,10,nn][[1]];Select[Range[nn], CompositeQ[ c=FromDigits[Take[p,#]]]&&SquareFreeQ[c]&]] (* _Harvey P. Dale_, Mar 25 2015 *) %Y A120943 Cf. A000796 = Decimal expansion of Pi, A011545 = Decimal expansion of pi truncated to n places. %Y A120943 Cf. A000796, A011545. %Y A120943 Complement of A120943 is A121865. %K A120943 base,nonn %O A120943 1,1 %A A120943 _Zak Seidov_, Aug 19 2006 %E A120943 More terms from _Robert G. Wilson v_, Aug 21 2006