This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120955 #21 Jul 19 2016 11:12:08 %S A120955 1,1,1,4,25,206,2060,23920,314065,4582300,73393490,1278859176, %T A120955 24073541260,486806278752,10525038917720,242318610557760, %U A120955 5919811842140945,152974724047702626,4169576527021400852 %N A120955 G.f. A(x) satisfies: Series_Reversion( x/A(x) ) / x = 2*A(x) - (1+x). %C A120955 The g.f. for A120956 = Series_Reversion( x/A(x) ) / x = 2*A(x) - (1+x), where A(x) is the g.f. of this sequence. %H A120955 Paul D. Hanna, <a href="/A120955/b120955.txt">Table of n, a(n) for n = 0..256</a> %F A120955 G.f. A(x) satisfies: %F A120955 (1) A( x*(2*A(x) - 1-x) ) = 2*A(x) - 1-x. %F A120955 (2) A(x) = 2*A(x/A(x)) - 1 - x/A(x). %F A120955 (3) A(x) = F(x/A(x)) and F(x) = A(x*F(x)) where F(x) = g.f. of A120956. %F A120955 (4) A(x) = 1+x + Sum{n>=1} x^n * d^n/dx^n (A(x)-1)^(n+1) / (n+1)!. - _Paul D. Hanna_, Dec 27 2012 %F A120955 a(n) = A120956(n)/2 for n>=2. %F A120955 a(n) = [x^n] A(x)^n / (2*n) for n>1; i.e., a(n) equals the coefficient of x^n in A(x)^n divided by 2*n. %F A120955 a(n) ~ c * n^(n + 1/2 + log(2)) / (exp(n) * (log(2))^n), where c = 0.33794865962155... . - _Vaclav Kotesovec_, Aug 10 2014 %e A120955 A(x) = 1 + x + x^2 + 4*x^3 + 25*x^4 + 206*x^5 + 2060*x^6 +... %e A120955 The g.f. of A120956 is: %e A120955 series_reversion(x/A(x))/x = 1 + x + 2*x^2 + 8*x^3 + 50*x^4 + 412*x^5 +... %e A120955 Compare terms to see that A120956(n) = 2*a(n) for n>=2. %e A120955 The g.f. satisfies the series: %e A120955 A(x) = 1+x + x*d/dx (A(x)-1)^2/2! + x^2*d^2/dx^2 (A(x)-1)^3/3! + x^3*d^3/dx^3 (A(x)-1)^4/4! + x^4*d^4/dx^4 (A(x)-1)^5/5! +... %o A120955 (PARI) a(n)=local(A=[1,1]);for(i=1,n,A=concat(A,t); A[ #A]=subst(Vec(serreverse(x/Ser(A)))[ #A],t,0));A[n+1] %o A120955 for(n=0, 25, print1(a(n), ", ")) %o A120955 (PARI) Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D %o A120955 {a(n)=local(A=1+x*O(x^n)); for(i=1, n, A=1+x+sum(m=1, n, x^m*Dx(m, (A-1+x*O(x^n))^(m+1)/(m+1)!) )); polcoeff(A, n)} %o A120955 for(n=0, 25, print1(a(n), ", ")) \\ _Paul D. Hanna_, Dec 27 2012 %Y A120955 Cf. A120956, A120970 (variant), A249933. %K A120955 nonn %O A120955 0,4 %A A120955 _Paul D. Hanna_, Jul 19 2006