This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120974 #18 Jun 04 2025 09:52:31 %S A120974 1,1,4,38,532,9329,190312,4340296,108043128,2890318936,82209697588, %T A120974 2467155342740,77676395612884,2554497746708964,87449858261161216, %U A120974 3107829518797739032,114399270654847628768,4353537522757357068296,171010040645759712226048 %N A120974 G.f. A(x) satisfies A(x/A(x)^4) = 1 + x; thus A(x) = 1 + series_reversion(x/A(x)^4). %H A120974 Robert Israel, <a href="/A120974/b120974.txt">Table of n, a(n) for n = 0..250</a> %F A120974 G.f. satisfies: A(x) = 1 + x*B(x)^4 = 1 + (1 + x*C(x)^4 )^4 where B(x) and C(x) satisfy: C(x) = B(x)*B(A(x)-1), B(x) = A(A(x)-1), B(A(x)-1) = A(B(x)-1), B(x/A(x)^4) = A(x), B(x) = A(x*B(x)^4) and B(x) is g.f. of A120975. %F A120974 From _Seiichi Manyama_, Jun 04 2025: (Start) %F A120974 Let b(n,k) = [x^n] B(x)^k, where B(x) is the g.f. of A120975. %F A120974 b(n,0) = 0^n; b(n,k) = k * Sum_{j=0..n} binomial(4*n+k,j)/(4*n+k) * b(n-j,4*j). %F A120974 a(n) = b(n-1,4) for n > 0. (End) %p A120974 A:= x -> 1: %p A120974 for m from 1 to 30 do %p A120974 Ap:= unapply(A(x)+c*x^m,x); %p A120974 S:= series(Ap(x/Ap(x)^4)-1-x, x, m+1); %p A120974 cs:= solve(convert(S,polynom),c); %p A120974 A:= subs(c=cs, eval(Ap)); %p A120974 od: %p A120974 seq(coeff(A(x),x,m),m=0..30);# _Robert Israel_, Oct 25 2019 %t A120974 nmax = 17; sol = {a[0] -> 1}; %t A120974 Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[ A[x/A[x]^4] - 1 - x + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}]; %t A120974 sol /. Rule -> Set; %t A120974 a /@ Range[0, nmax] (* _Jean-François Alcover_, Nov 02 2019 *) %o A120974 (PARI) {a(n)=local(A=[1,1]);for(i=2,n,A=concat(A,0); A[ #A]=-Vec(subst(Ser(A),x,x/Ser(A)^4))[ #A]);A[n+1]} %o A120974 (PARI) b(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(4*n+k, j)/(4*n+k)*b(n-j, 4*j))); %o A120974 a(n) = if(n==0, 1, b(n-1, 4)); \\ _Seiichi Manyama_, Jun 04 2025 %Y A120974 Cf. A120975; variants: A120970, A120972, A120976, A030266, A067145, A107096. %K A120974 nonn %O A120974 0,3 %A A120974 _Paul D. Hanna_, Jul 20 2006