cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120977 G.f. A(x) satisfies A(x) = 1 + x*A(x)^5 * A(x*A(x)^5)^5.

This page as a plain text file.
%I A120977 #10 Mar 01 2025 08:35:42
%S A120977 1,1,10,170,3745,96960,2814752,89221360,3037327145,109825686370,
%T A120977 4185287088735,167139924222426,6964610755602495,301800832258018835,
%U A120977 13564159649547824735,630916661388096564620,30316241123672291911875
%N A120977 G.f. A(x) satisfies A(x) = 1 + x*A(x)^5 * A(x*A(x)^5)^5.
%F A120977 G.f. A(x) satisfies: A(x) = G(G(x)-1), A(G(x)-1) = G(A(x)-1), A(x) = G(x*A(x)^5) and A(x/G(x)^5) = G(x), where G(x) is the g.f. of A120976 and satisfies G(x/G(x)^5) = 1 + x.
%F A120977 From _Seiichi Manyama_, Mar 01 2025: (Start)
%F A120977 Let a(n,k) = [x^n] A(x)^k.
%F A120977 a(n,0) = 0^n; a(n,k) = k * Sum_{j=0..n} binomial(5*n+k,j)/(5*n+k) * a(n-j,5*j). (End)
%o A120977 (PARI) {a(n)=local(A,G=[1,1]);for(i=1,n,G=concat(G,0); G[ #G]=-Vec(subst(Ser(G),x,x/Ser(G)^5))[ #G]); A=Vec(((Ser(G)-1)/x)^(1/5));A[n+1]}
%o A120977 (PARI) a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, binomial(5*n+k, j)/(5*n+k)*a(n-j, 5*j))); \\ _Seiichi Manyama_, Mar 01 2025
%Y A120977 Cf. A120976; variants: A110447, A120971, A120973, A120975.
%K A120977 nonn
%O A120977 0,3
%A A120977 _Paul D. Hanna_, Jul 20 2006