This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120980 #21 Nov 27 2021 05:20:36 %S A120980 1,1,-2,9,-68,740,-10554,185906,-3891320,94259952,-2592071760, %T A120980 79748398752,-2713685928744,101184283477680,-4102325527316184, %U A120980 179674073609647080,-8454031849605513024,425281651659459346944,-22777115050468598701248 %N A120980 E.g.f. satisfies: A(x)^A(x) = 1 + x. %H A120980 G. C. Greubel, <a href="/A120980/b120980.txt">Table of n, a(n) for n = 0..375</a> %F A120980 E.g.f.: A(x) = log(1+x)/LambertW(log(1+x)). %F A120980 log(A(x)) = LambertW(log(1+x)). %F A120980 E.g.f.: A(x) = 1/G(-x) where G(x) = g.f. of A052813. %F A120980 E.g.f. of A052807 = -log(A(-x)) = -log(1-x)/A(-x). %F A120980 a(n) = Sum_{k=0..n} (-1)^(k+1)*Stirling1(n,k)*(k-1)^(k-1). - _Vladeta Jovovic_, Jul 22 2006 %F A120980 |a(n)| ~ exp((exp(-1)-1)*n+3/2) * n^(n-1) / (exp(exp(-1))-1)^(n-1/2). - _Vaclav Kotesovec_, Jul 09 2013 %t A120980 CoefficientList[Series[Log[1+x]/LambertW[Log[1+x]], {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Jul 09 2013 *) %t A120980 Table[StirlingS1[n, 0] + StirlingS1[n, 1] + Sum[(-1)^(k + 1)*StirlingS1[n, k]*(k - 1)^(k - 1), {k, 2, n}], {n,0,50}] (* _G. C. Greubel_, Jun 21 2017 *) %t A120980 CoefficientList[Series[Exp[LambertW[Log[1+x]]], {x, 0, 25}], x]* Range[0, 25]! (* _G. C. Greubel_, Jun 22 2017 *) %o A120980 (PARI) {a(n)=local(A=[1,1]);for(i=1,n,A=concat(A,0); A[ #A]=-Vec(Ser(A)^Ser(A))[ #A]);n!*A[n+1]} %o A120980 (PARI) x='x+O('x^50); Vec(serlaplace(exp(lambertw(log(1+x))))) \\ _G. C. Greubel_, Jun 22 2017 %Y A120980 Cf. A008275, A052813, A052807, A349561, A349583, A349585. %K A120980 sign %O A120980 0,3 %A A120980 _Paul D. Hanna_, Jul 20 2006