A120994 Numerators of rationals related to John Wallis' product formula for Pi/2 from his 'Arithmetica infinitorum' from 1659.
1, 16, 192, 4096, 16384, 262144, 1048576, 268435456, 3221225472, 17179869184, 68719476736, 13194139533312, 17592186044416, 281474976710656, 1125899906842624, 1152921504606846976, 4611686018427387904
Offset: 1
Examples
Rationals r(n)=((3/4)*W(n)): [1, 16/15, 192/175, 4096/3675, 16384/14553, 262144/231231, 1048576/920205, 268435456/234652275,...]
Links
- W. Lang: Rationals r(n) and limit.
Formula
a(n) = numerator((3/4)*W(n)), n>=1, with the rationals W(n) given above. An equivalent form is W(n) = (((4^n)/binomial(2*n,n))^2)/(2*n+1).
Comments