A121004 Numerators of partial sums of Catalan numbers scaled by powers of 1/(5*5^2)=1/125.
1, 126, 15752, 393801, 246125639, 30765704917, 3845713114757, 480714139345054, 12017853483626636, 7511158427266652362, 938894803408331562046, 117361850426041445314536, 14670231303255180664525012
Offset: 0
Examples
Rationals r(n): [1, 126/125, 15752/15625, 393801/390625, 246125639/244140625, 30765704917/30517578125,...].
Links
- W. Lang: Rationals r(n), limit.
Programs
-
Maple
The value of the series is lim_{n->infinity}(r(n) := rII(2;n)) = 5*(18 - 11*phi) = 5*sqrt(5)/phi^5 = 1.0081306187560 (maple10, 15 digits).
Formula
a(n)=numerator(r(n)) with r(n) := rII(p=2,n) = sum(C(k)/5^(3*k),k=0..n) and C(k):=A000108(k) (Catalan). The rationals r(n) are given in lowest terms.
Comments