A121008 Numerators of partial alternating sums of Catalan numbers scaled by powers of 1/(5*3^2) = 1/45.
1, 44, 1982, 17837, 4013339, 60200071, 2709003239, 121905145612, 658287786362, 740573759652388, 33325819184374256, 1499661863296782734, 67484783848355431042, 607363054635198730798, 3036815273175993713422
Offset: 0
Examples
Rationals r(n): [1, 44/45, 1982/2025, 17837/18225, 4013339/4100625, 60200071/61509375, 2709003239/2767921875,...].
Links
- W. Lang: Rationals r(n), limit.
Programs
-
Maple
The limit lim_{n->infinity}(r(n) := rIII(2;n)) = 3*(-11 + 7*phi) = 3*sqrt(5)/phi^4 = 0.9787137637479 (maple10, 15 digits).
Formula
a(n)=numerator(r(n)) with r(n) := rIII(p=2,n) = sum(((-1)^k)*C(k)/((5^k)*F(2*2)^(2*k)),k=0..n), with F(4)=3 and C(k):=A000108(k) (Catalan). The rationals r(n) are given in lowest terms.
Comments