A121010 Numerators of partial alternating sums of Catalan numbers scaled by powers of 1/(5*8^2) = 1/320.
1, 319, 51041, 6533247, 5226597607, 1672511234219, 267601797475073, 342530300768093011, 2192193924915795299, 17537551399326362389569, 2806008223892217982335239, 1795845263291019508694523567
Offset: 0
Examples
Rationals r(n): [1, 319/320, 51041/51200, 6533247/6553600, 5226597607/5242880000, 1672511234219/1677721600000,...].
Links
- W. Lang: Rationals r(n), limit.
Programs
-
Maple
The limit lim_{n->infinity} (r(n) := rIII(3;n)) = 8*(-29 + 18*phi) = 8*sqrt(5)/phi^6 = 0.9968943824 (maple10, 10 digits).
Formula
a(n)=numerator(r(n)) with r(n) := rIII(p=3,n) = sum(((-1)^k)*C(k)/((5^k)*F(2*3)^(2*k)),k=0..n), with F(6)=8 and C(k):=A000108(k) (Catalan). The rationals r(n) are given in lowest terms.
Comments