This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A121016 #10 Oct 31 2019 14:32:32 %S A121016 3,7,10,15,31,36,42,45,54,63,127,136,153,170,187,204,221,238,255,292, %T A121016 365,438,511,528,561,594,627,660,682,693,726,759,792,825,858,891,924, %U A121016 957,990,1023,2047,2080,2145,2184,2210,2275,2340,2405,2457,2470,2535 %N A121016 Numbers whose binary expansion is properly periodic. %C A121016 A finite sequence is aperiodic if its cyclic rotations are all different. - _Gus Wiseman_, Oct 31 2019 %H A121016 Charles R Greathouse IV, <a href="/A121016/b121016.txt">Table of n, a(n) for n = 1..10000</a> %e A121016 For example, 204=(1100 1100)_2 and 292=(100 100 100)_2 belong to the sequence, but 30=(11110)_2 cannot be split into repeating periods. %e A121016 From _Gus Wiseman_, Oct 31 2019: (Start) %e A121016 The sequence of terms together with their binary expansions and binary indices begins: %e A121016 3: 11 ~ {1,2} %e A121016 7: 111 ~ {1,2,3} %e A121016 10: 1010 ~ {2,4} %e A121016 15: 1111 ~ {1,2,3,4} %e A121016 31: 11111 ~ {1,2,3,4,5} %e A121016 36: 100100 ~ {3,6} %e A121016 42: 101010 ~ {2,4,6} %e A121016 45: 101101 ~ {1,3,4,6} %e A121016 54: 110110 ~ {2,3,5,6} %e A121016 63: 111111 ~ {1,2,3,4,5,6} %e A121016 127: 1111111 ~ {1,2,3,4,5,6,7} %e A121016 136: 10001000 ~ {4,8} %e A121016 153: 10011001 ~ {1,4,5,8} %e A121016 170: 10101010 ~ {2,4,6,8} %e A121016 187: 10111011 ~ {1,2,4,5,6,8} %e A121016 204: 11001100 ~ {3,4,7,8} %e A121016 221: 11011101 ~ {1,3,4,5,7,8} %e A121016 238: 11101110 ~ {2,3,4,6,7,8} %e A121016 255: 11111111 ~ {1,2,3,4,5,6,7,8} %e A121016 292: 100100100 ~ {3,6,9} %e A121016 (End) %t A121016 PeriodicQ[n_, base_] := Block[{l = IntegerDigits[n, base]}, MemberQ[ RotateLeft[l, # ] & /@ Most@ Divisors@ Length@l, l]]; Select[ Range@2599, PeriodicQ[ #, 2] &] %o A121016 (PARI) is(n)=n=binary(n);fordiv(#n,d,for(i=1,#n/d-1, for(j=1,d, if(n[j]!=n[j+i*d], next(3)))); return(d<#n)) \\ _Charles R Greathouse IV_, Dec 10 2013 %Y A121016 A020330 is a subsequence. %Y A121016 Numbers whose binary expansion is aperiodic are A328594. %Y A121016 Numbers whose reversed binary expansion is Lyndon are A328596. %Y A121016 Numbers whose binary indices have equal run-lengths are A164707. %Y A121016 Cf. A000120, A003714, A014081, A065609, A069010, A275692, A328595. %K A121016 base,easy,nonn %O A121016 1,1 %A A121016 _Jacob A. Siehler_, Sep 08 2006