A119361 a(n) is the n-th positive integer which is divisible by the same distinct primes as n and which is divisible by no other primes.
1, 4, 27, 16, 3125, 48, 823543, 256, 19683, 320, 285311670611, 162, 302875106592253, 1568, 5625, 65536, 827240261886336764177, 432, 1978419655660313589123979, 2500, 50421, 22528, 20880467999847912034355032910567, 972, 298023223876953125, 70304
Offset: 1
Keywords
Examples
6 = 2*3. The sequence of positive integers which are divisible by 2 and 3, but not divisible by any other primes, is 6,12,18,24,36,48,54,... The 6th such integer is 48, so a(6) = 48.
Links
- Hagen von Eitzen and Robert Israel, Table of n, a(n) for n = 1..388 (n = 1..50 from Hagen von Eitzen)
Programs
-
Maple
f:= proc(n) local P, r, Cands, j, B; P:= sort(convert(numtheory:-factorset(n),list)); r:= convert(P,`*`); Cands:= [seq(r*P[1]^i,i=0..n-1)]; for j from 2 to nops(P) do B:= Cands[n]; Cands:= sort(map(c -> seq(c*P[j]^i,i=0..floor(log[P[j]](B/c))), Cands)); Cands:= Cands[1..n]; od; Cands[n] end proc: f(1):= 1: map(f, [$1..100]); # Robert Israel, Oct 09 2016
-
Mathematica
f[n_] := Module[{P, r, Cands, j, B}, P = FactorInteger[n][[All, 1]]; r = Times @@ P; Cands = Table[r P[[1]]^i, {i, 0, n-1}]; Do[B = Cands[[n]]; Cands = Table[# P[[j]]^i, {i, 0, Floor[Log[P[[j]], B/#]]}]& /@ Cands // Flatten // Sort; Cands = Cands[[1;;n]], {j, 2, Length[P]}]; Cands[[n]]]; f[1] = 1; f /@ Range[100] (* Jean-François Alcover, Sep 17 2020, after Robert Israel *)
Extensions
More terms from Joshua Zucker, Aug 12 2006
More terms copied from b-file by Hagen von Eitzen, Jul 20 2009
Comments