cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121123 Unbranched a-4-catapolynonagons (see Brunvoll reference for precise definition).

Original entry on oeis.org

1, 3, 12, 63, 342, 1998, 11772, 70308, 420552, 2521368, 15120432, 90710928, 544218912, 3265243488, 19591180992, 117546666048, 705278316672, 4231667380608, 25389994205952, 152339950119168, 914039640248832, 5484237750793728, 32905426141965312, 197432556307596288
Offset: 2

Views

Author

N. J. A. Sloane, Aug 13 2006

Keywords

Programs

  • Maple
    # Exhibit 1
    Hra := proc(r::integer,a::integer,q::integer)
        binomial(r-1,a-1)*(q-3)+binomial(r-1,a) ;
        %*(q-3)^(r-a-1) ;
    end proc:
    Jra := proc(r::integer,a::integer,q::integer)
        binomial(r-2,a-2)*(q-3)^2 +2*binomial(r-2,a-1)*(q-3) +binomial(r-2,a) ;
        %*(q-3)^(r-a-2) ;
    end proc:
    # Exhibit 2, I_m
    A121123 := proc(r::integer)
        local q,a,f ;
        q := 9 ;
        a := 0 ;
        f := 1 +(-1)^(r+a) +(1+(-1)^a) *(1-(-1)^r) *floor((q-3)/2) /2 ;
        Jra(r,a,q)+binomial(2,r-a)+f*Hra(floor(r/2),floor(a/2),q) ;
        %/4 ;
    end proc:
    seq(A121123(n),n=2..30) ; # R. J. Mathar, Aug 01 2019
  • Mathematica
    Join[{1}, LinearRecurrence[{6, 6, -36}, {3, 12, 63}, 23]] (* Jean-François Alcover, Mar 31 2020 *)

Formula

From Colin Barker, Aug 30 2013: (Start)
a(n) = 6*a(n-1)+6*a(n-2)-36*a(n-3) for n>5.
G.f.: x^2 -3*x^3*(-1+2*x+9*x^2) / ( (6*x-1)*(6*x^2-1) ). (End)
a(n) = A026532(n+1)/12 +6^(n-2)/4, n>2. - R. J. Mathar, Aug 01 2019