A121123 Unbranched a-4-catapolynonagons (see Brunvoll reference for precise definition).
1, 3, 12, 63, 342, 1998, 11772, 70308, 420552, 2521368, 15120432, 90710928, 544218912, 3265243488, 19591180992, 117546666048, 705278316672, 4231667380608, 25389994205952, 152339950119168, 914039640248832, 5484237750793728, 32905426141965312, 197432556307596288
Offset: 2
Links
- J. Brunvoll, S. J. Cyvin and B. N. Cyvin, Isomer enumeration of polygonal systems..., J. Molec. Struct. (Theochem), 364 (1996), 1-13, Table 12, q=9, alpha=0.
- Index entries for linear recurrences with constant coefficients, signature (6,6,-36).
Programs
-
Maple
# Exhibit 1 Hra := proc(r::integer,a::integer,q::integer) binomial(r-1,a-1)*(q-3)+binomial(r-1,a) ; %*(q-3)^(r-a-1) ; end proc: Jra := proc(r::integer,a::integer,q::integer) binomial(r-2,a-2)*(q-3)^2 +2*binomial(r-2,a-1)*(q-3) +binomial(r-2,a) ; %*(q-3)^(r-a-2) ; end proc: # Exhibit 2, I_m A121123 := proc(r::integer) local q,a,f ; q := 9 ; a := 0 ; f := 1 +(-1)^(r+a) +(1+(-1)^a) *(1-(-1)^r) *floor((q-3)/2) /2 ; Jra(r,a,q)+binomial(2,r-a)+f*Hra(floor(r/2),floor(a/2),q) ; %/4 ; end proc: seq(A121123(n),n=2..30) ; # R. J. Mathar, Aug 01 2019
-
Mathematica
Join[{1}, LinearRecurrence[{6, 6, -36}, {3, 12, 63}, 23]] (* Jean-François Alcover, Mar 31 2020 *)
Formula
From Colin Barker, Aug 30 2013: (Start)
a(n) = 6*a(n-1)+6*a(n-2)-36*a(n-3) for n>5.
G.f.: x^2 -3*x^3*(-1+2*x+9*x^2) / ( (6*x-1)*(6*x^2-1) ). (End)
a(n) = A026532(n+1)/12 +6^(n-2)/4, n>2. - R. J. Mathar, Aug 01 2019