cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121124 Unbranched a-4-catapolynonagons (see Brunvoll reference for precise definition).

Original entry on oeis.org

1, 4, 21, 138, 864, 5526, 34992, 221724, 1399680, 8818632, 55427328, 347684400, 2176782336, 13604912928, 84894511104, 528958247616, 3291294892032, 20453047668864, 126949945835520, 787089669219072, 4874877920083968, 30163307160752640, 186464080443211776, 1151689908801235968
Offset: 2

Views

Author

N. J. A. Sloane, Aug 13 2006

Keywords

Programs

  • Maple
    # Exhibit 1
    Hra := proc(r::integer,a::integer,q::integer)
        binomial(r-1,a-1)*(q-3)+binomial(r-1,a) ;
        %*(q-3)^(r-a-1) ;
    end proc:
    Jra := proc(r::integer,a::integer,q::integer)
        binomial(r-2,a-2)*(q-3)^2 +2*binomial(r-2,a-1)*(q-3) +binomial(r-2,a) ;
        %*(q-3)^(r-a-2) ;
    end proc:
    # Exhibit 2
    A121124 := proc(r::integer)
        q := 9 ;
        a := 1 ;
        Jra(r,a,q)+binomial(2,r-a)+( 1 +(-1)^(r+a) +(1+(-1)^a)*(1-(-1)^r)*floor((q-3)/2)/2)*Hra(floor(r/2),floor(a/2),q) ;
        %/4 ;
    end proc:
    seq(A121124(n),n=2..30)  # R. J. Mathar, Aug 01 2019
  • Mathematica
    Join[{1, 4}, LinearRecurrence[{12, -30, -72, 216}, {21, 138, 864, 5526}, 22]] (* Jean-François Alcover, Apr 04 2020 *)

Formula

From R. J. Mathar, Aug 01 2019: (Start)
G.f.: x^2 +4*x^3 -3*x^4*(7-38*x-54*x^2+270*x^3) / ( (6*x^2-1)*(-1+6*x)^2 ).
a(n) = A000400((n-1)/2)/12 +6^(n-1)/16 +A053469(n+1)/864, where Axxxxx(.) is zero for fractional indices, n>3. (End)