A121124 Unbranched a-4-catapolynonagons (see Brunvoll reference for precise definition).
1, 4, 21, 138, 864, 5526, 34992, 221724, 1399680, 8818632, 55427328, 347684400, 2176782336, 13604912928, 84894511104, 528958247616, 3291294892032, 20453047668864, 126949945835520, 787089669219072, 4874877920083968, 30163307160752640, 186464080443211776, 1151689908801235968
Offset: 2
Links
- J. Brunvoll, S. J. Cyvin and B. N. Cyvin, Isomer enumeration of polygonal systems..., J. Molec. Struct. (Theochem), 364 (1996), 1-13, Table 12, q=9, alpha=1.
- Index entries for linear recurrences with constant coefficients, signature (12,-30,-72,216).
Programs
-
Maple
# Exhibit 1 Hra := proc(r::integer,a::integer,q::integer) binomial(r-1,a-1)*(q-3)+binomial(r-1,a) ; %*(q-3)^(r-a-1) ; end proc: Jra := proc(r::integer,a::integer,q::integer) binomial(r-2,a-2)*(q-3)^2 +2*binomial(r-2,a-1)*(q-3) +binomial(r-2,a) ; %*(q-3)^(r-a-2) ; end proc: # Exhibit 2 A121124 := proc(r::integer) q := 9 ; a := 1 ; Jra(r,a,q)+binomial(2,r-a)+( 1 +(-1)^(r+a) +(1+(-1)^a)*(1-(-1)^r)*floor((q-3)/2)/2)*Hra(floor(r/2),floor(a/2),q) ; %/4 ; end proc: seq(A121124(n),n=2..30) # R. J. Mathar, Aug 01 2019
-
Mathematica
Join[{1, 4}, LinearRecurrence[{12, -30, -72, 216}, {21, 138, 864, 5526}, 22]] (* Jean-François Alcover, Apr 04 2020 *)
Formula
From R. J. Mathar, Aug 01 2019: (Start)
G.f.: x^2 +4*x^3 -3*x^4*(7-38*x-54*x^2+270*x^3) / ( (6*x^2-1)*(-1+6*x)^2 ).