A121164 Triangle, real terms extracted from squares of paired terms in arithmetic sequences.
-3, -8, -5, -15, -16, -7, -24, -33, -24, -9, -35, -56, -51, -32, -11, -48, -85, -88, -69, -40, -13, -63, -120, -135, -120, -87, -48, -15, -80, -161, -192, -185, -152, -105, -56, -17, -99, -208, -259, -264, -235, -184, -123, -19, -120, -261, -336, -357, -336, -285, -216, -141
Offset: 1
Examples
Array of the extracted real terms: -3, -5, -7, -9, ... -8, -16, -24, -32, ... -15, -33, -51, -69, ... -24, -56, -88, -120, ... ... Taking antidiagonals we get the triangle: -3; -8, -5; -15, -16, -7; -24, -33, -24, -9; -35, -56, -51, -32, -11; -48, -85, -88, -69, -40, -13; ... (3,2) = -16 since (taken from the arithmetic sequence 1, 3, 5, ...), (3 + 5i)^2 = (-16 + 30i).
Formula
Form an array of the arithmetic sequences: (1, 2, 3, ...); (1, 3, 5, ...); (1, 4, 7, ...); and consider each pair as a complex term; e.g., (1 + 2i), (2 + 3i), then square each complex term and extract the real integer. Antidiagonals become rows of the triangle.
Comments