This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A121207 #58 Apr 04 2024 10:55:23 %S A121207 1,1,1,1,1,2,1,1,3,5,1,1,4,9,15,1,1,5,14,31,52,1,1,6,20,54,121,203,1, %T A121207 1,7,27,85,233,523,877,1,1,8,35,125,400,1101,2469,4140,1,1,9,44,175, %U A121207 635,2046,5625,12611,21147,1,1,10,54,236,952,3488,11226,30846,69161,115975 %N A121207 Triangle read by rows. The definition is by diagonals. The r-th diagonal from the right, for r >= 0, is given by b(0) = b(1) = 1; b(n+1) = Sum_{k=0..n} binomial(n+2,k+r)*a(k). %C A121207 From _Paul D. Hanna_, Dec 12 2006: (Start) %C A121207 Consider the row reversal, which is A124496 with an additional left column (A000110 = Bell numbers). The matrix inverse of this triangle is very simple: %C A121207 1; %C A121207 -1, 1; %C A121207 -1, -1, 1; %C A121207 -1, -2, -1, 1; %C A121207 -1, -3, -3, -1, 1; %C A121207 -1, -4, -6, -4, -1, 1; %C A121207 -1, -5, -10, -10, -5, -1, 1; %C A121207 -1, -6, -15, -20, -15, -6, -1, 1; %C A121207 -1, -7, -21, -35, -35, -21, -7, -1, 1; %C A121207 -1, -8, -28, -56, -70, -56, -28, -8, -1, 1; ... %C A121207 This gives the recurrence and explains why the Bell numbers appear. (End) %C A121207 Triangle A160185 = reversal then deletes right border of 1's. - _Gary W. Adamson_, May 03 2009 %H A121207 Alois P. Heinz, <a href="/A121207/b121207.txt">Rows n = 0..140, flattened</a> %H A121207 Robert Dougherty-Bliss, <a href="https://arxiv.org/abs/2210.13520">Gosper's algorithm and Bell numbers</a>, arXiv:2210.13520 [cs.SC], 2022. %H A121207 Robert Dougherty-Bliss, <a href="https://sites.math.rutgers.edu/~zeilberg/Theses/RobertDoughertyBlissThesis.pdf">Experimental Methods in Number Theory and Combinatorics</a>, Ph. D. Dissertation, Rutgers Univ. (2024). See pp. 69-70. %H A121207 H. W. Gould and Jocelyn Quaintance, <a href="http://www.doiserbia.nb.rs/img/doi/1452-8630/2007/1452-86300702371G.pdf">A linear binomial recurrence and the Bell numbers and polynomials</a>, Applicable Analysis and Discrete Mathematics, 1 (2007), 371-385. %e A121207 Triangle begins (compare also table 9.2 in the Gould-Quaintance reference): %e A121207 1; %e A121207 1, 1; %e A121207 1, 1, 2; %e A121207 1, 1, 3, 5; %e A121207 1, 1, 4, 9, 15; %e A121207 1, 1, 5, 14, 31, 52; %e A121207 1, 1, 6, 20, 54, 121, 203; %e A121207 1, 1, 7, 27, 85, 233, 523, 877; %e A121207 1, 1, 8, 35, 125, 400,1101, 2469, 4140; %e A121207 1, 1, 9, 44, 175, 635,2046, 5625, 12611, 21147; %e A121207 1, 1, 10, 54, 236, 952,3488,11226, 30846, 69161, 115975; %e A121207 1, 1, 11, 65, 309,1366,5579,20425, 65676,180474, 404663, 678570; %e A121207 1, 1, 12, 77, 395,1893,8494,34685,126817,407787,1120666,2512769,4213597; %p A121207 # This is the Jovovic formula with general index 'd' %p A121207 # where A040027, A045499, etc. use one explicit integer %p A121207 # Index n+1 is shifted to n from the original formula. %p A121207 Gould := proc(n, d) local k; %p A121207 if n <= 1 then return 1 else %p A121207 return add(binomial(n-1+d, k+d)*Gould(k, d), k=0..n-1); %p A121207 fi %p A121207 end: %p A121207 # row and col refer to the extrapolated super-table: %p A121207 # working up to row, not row-1, shows also the Bell numbers %p A121207 # at the end of each row. %p A121207 for row from 0 to 13 do %p A121207 for col from 0 to row do %p A121207 # 'diag' is constant for one of A040027, A045499 etc. %p A121207 diag := row - col; %p A121207 printf("%4d, ", Gould(col, diag)); %p A121207 od; %p A121207 print(); %p A121207 od; # _R. J. Mathar_ %p A121207 # second Maple program: %p A121207 T:= proc(n, k) option remember; `if`(k=0, 1, %p A121207 add(T(n-j, k-j)*binomial(n-1, j-1), j=1..k)) %p A121207 end: %p A121207 seq(seq(T(n, k), k=0..n), n=0..12); # _Alois P. Heinz_, Jan 08 2018 %t A121207 g[n_ /; n <= 1, _] := 1; g[n_, d_] := g[n, d] = Sum[ Binomial[n-1+d, k+d]*g[k, d], {k, 0, n-1}]; Flatten[ Table[ diag = row-col; g[col, diag], {row, 0, 13}, {col, 0, row}]] (* _Jean-François Alcover_, Nov 25 2011, after _R. J. Mathar_ *) %t A121207 T[n_, k_] := T[n, k] = If[k == 0, 1, Sum[T[n-j, k-j] Binomial[n-1, j-1], {j, 1, k}]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 26 2018, after _Alois P. Heinz_ *) %o A121207 (Python) %o A121207 # Computes the n-th diagonal of the triangle reading from the right. %o A121207 from itertools import accumulate %o A121207 def Gould_diag(diag, size): %o A121207 if size < 1: return [] %o A121207 if size == 1: return [1] %o A121207 L, accu = [1,1], [1]*diag %o A121207 for _ in range(size-2): %o A121207 accu = list(accumulate([accu[-1]] + accu)) %o A121207 L.append(accu[-1]) %o A121207 return L # _Peter Luschny_, Apr 24 2016 %o A121207 (Julia) %o A121207 function Gould_diag(diag, size) %o A121207 size < 1 && return [] %o A121207 size == 1 && return [1] %o A121207 L = [1, 1] %o A121207 accu = ones(BigInt, diag) %o A121207 for _ in 1:size-2 %o A121207 accu = cumsum(vcat(accu[end], accu)) %o A121207 L = vcat(L, accu[end]) %o A121207 end %o A121207 L end # _Peter Luschny_, Mar 30 2022 %Y A121207 Diagonals, reading from the right, are A000110, A040027, A045501, A045499, A045500. %Y A121207 A124496 is a very similar triangle, obtained by reversing the rows and appending a rightmost diagonal which is A000110, the Bell numbers. See also A046936, A298804, A186020, A160185. %Y A121207 T(2n,n) gives A297924. %K A121207 nonn,tabl %O A121207 0,6 %A A121207 _N. J. A. Sloane_, based on email from _R. J. Mathar_, Dec 11 2006