cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121257 Number of conjugated cycles composed of six carbons in (1,1)-nanotubes in terms of the number of naphthalene units.

Original entry on oeis.org

4, 20, 76, 260, 840, 2616, 7940, 23644, 69380, 201220, 578064, 1647600, 4664836, 13132580, 36789820, 102621956, 285174360, 789810984, 2180889860, 6005842540, 16498958324, 45225010180, 123715684896, 337806904800, 920819997700
Offset: 1

Views

Author

Parthasarathy Nambi, Aug 22 2006

Keywords

Comments

See Table 2 on page 412 of Lukovits and Janezic paper for details.

Examples

			If n=5 then the number of conjugated cycles composed of six carbons in (1,1)-nanotubes is 840 which is the fifth term in the sequence. Here n is the number of naphthalene units.
		

References

  • I. Lukovits and D. Janezic, "Enumeration of conjugated circuits in nanotubes", J. Chem. Inf. Comput. Sci., vol. 44 (2004) pp. 410-414.

Programs

  • Maple
    Kn11 := proc(n) if n <= 0 then n+2 ; else 3*procname(n-1)-procname(n-2) ; fi; end: Ksub11 := proc(n) if n = -1 then 1 ; elif n = 0 then 3 ; else Kn11(n)+procname(n-1) ; fi; end: a := proc(n) 4*add( Ksub11(j)*Kn11(n-3-j),j=-1..n-2) ; end: seq(a(n),n=0..20) ; # R. J. Mathar, Mar 18 2009

Formula

a(n)= 6a(n-1)-11a(n-2)+6a(n-3)-a(n-4)=4*A001870(n-1). G.f.: -4*x*(-1+x)/(x^2-3*x+1)^2. - R. J. Mathar, Mar 18 2009

Extensions

More terms from R. J. Mathar, Mar 18 2009