This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A121263 #39 May 11 2024 21:55:51 %S A121263 10,11,13,16,20,25,31,38,46,55,65,87,135,239,463,943,1967,4143,8751, %T A121263 18479,38959,103471,306223,942127,2932783,9153583,28562479,89028655, %U A121263 277145647,861652015,2675637295,10173443119,41132125231,168836688943,695134284847 %N A121263 Descending dungeons: see Comments lines for definition. %C A121263 Let "N_b" denote "N read in base b" and let "N" denote "N written in base 10" (as in normal life). The sequence is given by 10, 10_11, 10_(11_12), 10_(11_(12_13)), 10_(11_(12_(13_14))), etc., or in other words %C A121263 ......10....10.....10.....10.......etc. %C A121263 ..............11.....11.....11......... %C A121263 .......................12.....12....... %C A121263 ................................13..... %C A121263 where the subscripts are evaluated from the bottom upwards. %C A121263 More precisely, "N_b" means "Take decimal expansion of N and evaluate it as if it were a base-b expansion". %C A121263 If a number constructed by iterating exponentials is called a "tower", perhaps these numbers should be called "dungeons". %C A121263 The sequence has steady growth until a(101), but then speeds up - see the extended table. For n <= 100, a(n) grows by less than a factor of 10 each iteration. For n >= 100, a(n)/a(99) at least squares each iteration. After a(1000) it will accelerate again and so on. %C A121263 This is one of a family of four related sequences: alpha: A121263 (this sequence), beta: A121265, gamma: A121295, delta: A121296. The four main difference sequences are beta - alpha: A122734, beta - gamma: A127744, delta - alpha: A130287 and delta - gamma: A128916. The other two differences are gamma - alpha: A131011 and delta - beta: A131012. %D A121263 David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 393-402. %H A121263 N. J. A. Sloane, <a href="/A121263/b121263.txt">Table of n, a(n) for n = 10..109</a> %H A121263 David Applegate, Marc LeBrun and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0611293">Descending Dungeons and Iterated Base-Changing</a>, arXiv:math/0611293 [math.NT], 2006-2007. %H A121263 David Applegate, Marc LeBrun, and N. J. A. Sloane, <a href="https://www.jstor.org/stable/40391135">Descending Dungeons, Problem 11286</a>, Amer. Math. Monthly, 116 (2009) 466-467. %H A121263 Brady Haran and N. J. A. Sloane, <a href="https://www.youtube.com/watch?v=xNx3JxRhnZE">Dungeon Numbers</a>, Numberphile video (2020). <a href="https://www.youtube.com/watch?v=HFeKdMf01rQ">(extra)</a> %F A121263 If a, b >= 10, then a_b is roughly 10^(log(a)*log(b)) (all logs are base 10 and "roughly" means it is an upper bound and using floor(log()) gives a lower bound). Equivalently, there exists c > 0 such that for all a, b >= 10, 10^(c*log(a)*log(b)) <= a_b <= 10^(log(a)*log(b)). Thus a_n is roughly 10^(Product_{i=1..n} log(9+i)), or equivalently, a_n = 10^10^(n loglog n + O(n)). - _David Applegate_ and _N. J. A. Sloane_, Aug 25 2006 %e A121263 For example, %e A121263 10 %e A121263 ..11 %e A121263 ....12 %e A121263 ......13 %e A121263 ........14 %e A121263 ..........15 %e A121263 ............16 %e A121263 ..............17 %e A121263 ................18 %e A121263 ..................19 %e A121263 ....................20 %e A121263 ......................21 %e A121263 ........................22 %e A121263 ..........................23 %e A121263 is equal to 239. %p A121263 M:=100; a:=list(10..M): a[10]:=10: lprint(10,a[10]); for n from 11 to M do b:=n; for i from n-1 by -1 to 11 do t1:=convert(i,base,10); b:=add(t1[j]*b^(j-1),j=1..nops(t1)): od: a[n]:=b; lprint(n,a[n]); od: # _N. J. A. Sloane_ %p A121263 asubb := proc(a,b) local t1; t1:=convert(a,base,10); add(t1[j]*b^(j-1),j=1..nops(t1)): end; # asubb(a,b) evaluates a as if it were written in base b # _N. J. A. Sloane_ %o A121263 (Python) %o A121263 def a(n): %o A121263 a_of_n = [((10 + int(i))) for i in range(n)] %o A121263 while len(a_of_n) != 1: %o A121263 exponent = 0 %o A121263 a_of_n [-2] = list(str(a_of_n [-2])) %o A121263 for i in range(len(a_of_n [-2])): %o A121263 a_of_n [-2] [-(i+1)] = int(a_of_n [-2] [-(i+1)]) %o A121263 a_of_n [-2] [-(i+1)] *= ((a_of_n [-1]) ** exponent) %o A121263 exponent += 1 %o A121263 a_of_n [-2] = sum(a_of_n [-2]) %o A121263 a_of_n = a_of_n [:((len(a_of_n))-1)] %o A121263 return (a_of_n [0]) %o A121263 # _Noah J. Crandall_, Dec 07 2020 %Y A121263 Cf. A121266, A121264, A121265, A121295, A121296, A121863, A121864. %Y A121263 Cf. A122734, A127744, A128916, A130287. %Y A121263 Cf. A122618 (= n_n), A121802 (the 2-adic limit of this sequence). %Y A121263 Cf. A049384, A124075. %K A121263 nonn,nice,base %O A121263 10,1 %A A121263 _Marc LeBrun_, Aug 23 2006