This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A121269 #26 May 10 2025 14:39:56 %S A121269 1,1,2,2,4,5,6,8,13,17,23,29,37,51,66,86,118,158,201,265,359,471,598, %T A121269 797,1043,1378,1765,2311,3064,3970,5017,6537,8547,11020,14007,18026, %U A121269 23404,30026,37989,48945,62759,80256,101070,129193,164835,209279,262693,334127 %N A121269 Number of maximal sum-free subsets of {1,2,...,n}. %C A121269 Also the number of maximal subsets of {1..n} containing no differences of pairs of elements. - _Gus Wiseman_, Jul 10 2019 %H A121269 Fausto A. C. Cariboni, <a href="/A121269/b121269.txt">Table of n, a(n) for n = 0..80</a> %H A121269 P. J. Cameron and P. Erdős, <a href="https://www.researchgate.net/publication/247043302_On_the_number_of_sets_of_integers_with_various_properties">On the number of integers with various properties</a>, in R. A. Mullin, ed., Number Theory: Proc. First Conf. of Canad. Number Theory Assoc. Conf., Banff, De Gruyter, Berlin, 1990, pp. 61-79. %H A121269 N. Hindman and H. Jordan, <a href="http://nyjm.albany.edu/j/2007/13-6.html">Measures of sum-free intersecting families</a>, New York J. Math. 13 (2007), 97-106. %e A121269 a(5)=5 because the maximal sum-free subsets of {1,2,3,4,5} are {1,4}, {2,3}, {2,5}, {1,3,5} and {3,4,5} %e A121269 From _Gus Wiseman_, Jul 10 2019: (Start) %e A121269 The a(1) = 1 through a(8) = 13 subsets: %e A121269 {1} {1} {1,3} {1,3} {1,4} {2,3} {1,4,6} {1,3,8} %e A121269 {2} {2,3} {1,4} {2,3} {1,3,5} {1,4,7} {1,4,6} %e A121269 {2,3} {2,5} {1,4,6} {2,3,7} {1,4,7} %e A121269 {3,4} {1,3,5} {2,5,6} {2,5,6} {1,5,8} %e A121269 {3,4,5} {3,4,5} {2,6,7} {1,6,8} %e A121269 {4,5,6} {3,4,5} {2,5,6} %e A121269 {1,3,5,7} {2,5,8} %e A121269 {4,5,6,7} {2,6,7} %e A121269 {3,4,5} %e A121269 {1,3,5,7} %e A121269 {2,3,7,8} %e A121269 {4,5,6,7} %e A121269 {5,6,7,8} %e A121269 (End) %t A121269 fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)]; %t A121269 Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Plus@@@Tuples[#,2]]=={}&]]],{n,0,10}] (* _Gus Wiseman_, Jul 10 2019 *) %Y A121269 Maximal product-free subsets are A326496. %Y A121269 Sum-free subsets are A007865. %Y A121269 Maximal sum-free and product-free subsets are A326497. %Y A121269 Subsets with sums are A326083. %Y A121269 Maximal subsets without sums of distinct elements are A326498. %Y A121269 Cf. A103580, A326020, A326489, A326495. %K A121269 nonn %O A121269 0,3 %A A121269 N. Hindman (nhindman(AT)aol.com), Aug 23 2006 %E A121269 a(0) = 1 prepended by _Gus Wiseman_, Jul 10 2019 %E A121269 Terms a(42) and beyond from _Fausto A. C. Cariboni_, Oct 26 2020