cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121273 Number of different n-dimensional convex regular polytopes that can tile n-dimensional space.

This page as a plain text file.
%I A121273 #14 Feb 16 2025 08:33:02
%S A121273 1,3,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
%T A121273 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
%U A121273 1,1,1,1,1,1,1,1,1,1,1
%N A121273 Number of different n-dimensional convex regular polytopes that can tile n-dimensional space.
%C A121273 The only n-dimensional convex regular polytope that can tile n-dimensional space for all n>4 is the n-hypercube
%H A121273 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Space-FillingPolyhedron.html">Space-Filling Polyhedron</a>.
%H A121273 Wikipedia, <a href="http://en.wikipedia.org/wiki/List_of_regular_polytopes">Regular Polytopes</a>.
%H A121273 Dominika Závacká, Cristina Dalfó, and Miquel Angel Fiol, <a href="https://ceur-ws.org/Vol-3792/paper19.pdf">Integer sequences from k-iterated line digraphs</a>, CEUR: Proc. 24th Conf. Info. Tech. - Appl. and Theory (ITAT 2024) Vol 3792, 156-161. See p. 161, Table 2.
%F A121273 a(n)=3 for n = 2 & 4. a(n)=1 for all other n.
%e A121273 a(2)=3 because the plane can be tiled by equilateral triangles, squares or regular hexagons. a(3)=1 since the only platonic solid that can tile 3-dimensional space is the cube. a(4)=3 because the 4-dimensional space can be tiled by hypercubes (tesseracts), hyperoctahedra or 24-cell polytopes.
%Y A121273 Cf. A053016, A060296.
%K A121273 nonn
%O A121273 1,2
%A A121273 _Sergio Pimentel_, Aug 23 2006