This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A121302 #9 Jul 22 2022 08:47:59 %S A121302 1,1,4,10,28,75,202,540,1440,3828,10153,26875,71021,187421,494013, %T A121302 1300844,3422509,8998118,23642479,62088032,162978242,427648023, %U A121302 1121766397,2941697012,7712415568,20215976824,52981414253,138831400836 %N A121302 Number of directed column-convex polyominoes having at least one 1-cell column. %C A121302 a(n) = Fibonacci(2n-1) - A121469(n,0) (obviously, since A121469(n,k) is the number of directed column-convex polyominoes of area n having k 1-cell columns). Column 1 of A121301. %H A121302 E. Barcucci, R. Pinzani and R. Sprugnoli, <a href="http://dx.doi.org/10.1007/3-540-56610-4_71">Directed column-convex polyominoes by recurrence relations</a>, Lecture Notes in Computer Science, No. 668, Springer, Berlin (1993), pp. 282-298. %H A121302 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-6,-2,4,-1). %F A121302 G.f.: z(1-z)(1-3z+2z^2)/[(1-3z+z^2)(1-2z-z^2+z^3)]. %F A121302 a(n) = A001519(n)-A077998(n-2), n>0. - _R. J. Mathar_, Jul 22 2022 %e A121302 a(3)=4 because, with the exception of the 3-cell column, all the other four directed column-convex polyominoes of area 3 have a 1-cell column. %p A121302 G:=z*(1-z)*(1-3*z+2*z^2)/(1-3*z+z^2)/(1-2*z-z^2+z^3): Gser:=series(G,z=0,35): seq(coeff(Gser,z,n),n=1..32); %o A121302 (PARI) Vec(z*(1-z)*(1-3*z+2*z^2)/((1-3*z+z^2)*(1-2*z-z^2+z^3)) + O(z^40)) \\ _Michel Marcus_, Feb 14 2016 %Y A121302 Cf. A121469, A121301. %K A121302 nonn,easy %O A121302 1,3 %A A121302 _Emeric Deutsch_, Aug 04 2006