This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A121303 #19 Feb 13 2021 07:57:20 %S A121303 1,1,0,1,1,2,0,1,1,1,2,3,0,2,3,1,0,2,4,4,0,3,6,6,1,1,0,6,8,5,0,2,9,13, %T A121303 10,1,1,2,6,16,15,6,0,3,6,22,25,15,1,0,2,10,24,36,26,7,0,4,9,22,50,45, %U A121303 21,1,1,0,12,32,65,72,42,8,0,4,12,34,70,106,77,28,1,1,2,12,40,90,150 %N A121303 Triangle read by rows: T(n,k) is the number of compositions of n into k primes (i.e., ordered sequences of k primes having sum n; n>=2, k>=1). %C A121303 Row n has floor(n/2) terms. %C A121303 Sum of terms in row n = A023360(n). %C A121303 T(n,1) = A010051(n) (characteristic function of primes); T(n,2) = A073610(n); T(n,3) = A098238(n). %C A121303 Sum_{k=1..floor(n/2)} k*T(n,k) = A121304(n). %H A121303 Alois P. Heinz, <a href="/A121303/b121303.txt">Rows n = 2..200, flattened</a> %F A121303 G.f.: 1/(1 - t*Sum_{i>=1} z^prime(i)). %e A121303 T(9,3) = 4 because we have [2,2,5], [2,5,2], [5,2,2] and [3,3,3]. %e A121303 Triangle starts: %e A121303 1; %e A121303 1; %e A121303 0, 1; %e A121303 1, 2; %e A121303 0, 1, 1; %e A121303 1, 2, 3; %e A121303 0, 2, 3, 1; %e A121303 0, 2, 4, 4; %e A121303 ... %p A121303 G:=1/(1-t*sum(z^ithprime(i),i=1..30))-1: Gser:=simplify(series(G,z=0,25)): for n from 2 to 21 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 2 to 21 do seq(coeff(P[n],t,j),j=1..floor(n/2)) od; # yields sequence in triangular form %p A121303 # second Maple program: %p A121303 with(numtheory): %p A121303 b:= proc(n) option remember; local j; if n=0 then [1] %p A121303 else []; for j to pi(n) do zip((x, y)->x+y, %, %p A121303 [0, b(n-ithprime(j))[]], 0) od; % fi %p A121303 end: %p A121303 T:= n-> subsop(1=NULL, b(n))[]: %p A121303 seq(T(n), n=2..20); # _Alois P. Heinz_, May 23 2013 %t A121303 nn=20;a[x_]:=Sum[x^Prime[n],{n,1,nn}];CoefficientList[Series[1/(1-y a[x]),{x,0,nn}],{x,y}]//Grid (* _Geoffrey Critzer_, Nov 08 2013 *) %Y A121303 Cf. A010051, A023360, A073610, A098238, A121304, A224344. %Y A121303 T(n^2,n) gives A341459. %K A121303 nonn,tabf %O A121303 2,6 %A A121303 _Emeric Deutsch_, Aug 06 2006