A121314 Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1, 0, 0, 0, 0, ...] DELTA [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 5, 6, 1, 0, 1, 7, 15, 10, 1, 0, 1, 9, 28, 35, 15, 1, 0, 1, 11, 45, 84, 70, 21, 1, 0, 1, 13, 66, 165, 210, 126, 28, 1, 0, 1, 15, 91, 286, 495, 462, 210, 36, 1
Offset: 0
Examples
Triangle begins 1; 0, 1; 0, 1, 1; 0, 1, 3, 1; 0, 1, 5, 6, 1; 0, 1, 7, 15, 10, 1; 0, 1, 9, 28, 35, 15, 1; 0, 1, 11, 45, 84, 70, 21, 1;
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- F. Yano and H. Yoshida, Some set partition statistics in non-crossing partitions and generating functions, Discr. Math., 307 (2007), 3147-3160.
Formula
T(0,0)=1; T(n,0)=0 for n > 0; T(n+1,k+1) = binomial(2*n-k,k)for n >= 0 and k >= 0.
Sum_{k=0..n} T(n,k)*x^k = A001519(n), A047849(n), A165310(n), A165311(n), A165312(n), A165314(n), A165322(n), A165323(n), A165324(n) for x = 1,2,3,4,5,6,7,8,9 respectively.
Sum_{k=0..n} 2^k*T(n,k) = (4^n+2)/3.
Sum_{k=0..n} 2^(n-k)*T(n,k) = A001835(n).
Sum_{k=0..n} 3^k*4^(n-k)*T(n,k) = A054879(n). - Philippe Deléham, Aug 26 2006
Sum_{k=0..n} T(n,k)*(-1)^k*2^(3n-2k) = A143126(n). - Philippe Deléham, Oct 31 2008
Sum_{k=0..n} T(n,k)*(-1)^k*3^(n-k) = A138340(n)/4^n. - Philippe Deléham, Nov 01 2008
G.f.: (1-(y+1)*x)/(1-(2y+1)*x+y^2*x^2). - Philippe Deléham, Nov 01 2011
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-2), T(0,0) = T(1,1) = 1, T(1,0) = 0. - Philippe Deléham, Feb 19 2012
Comments