cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121314 Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1, 0, 0, 0, 0, ...] DELTA [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 5, 6, 1, 0, 1, 7, 15, 10, 1, 0, 1, 9, 28, 35, 15, 1, 0, 1, 11, 45, 84, 70, 21, 1, 0, 1, 13, 66, 165, 210, 126, 28, 1, 0, 1, 15, 91, 286, 495, 462, 210, 36, 1
Offset: 0

Views

Author

Philippe Deléham, Aug 25 2006

Keywords

Comments

A054142 with first diagonal 1, 0, 0, 0, 0, 0, 0, 0, ...
Mirror image of triangle in A165253.

Examples

			Triangle begins
  1;
  0,  1;
  0,  1,  1;
  0,  1,  3,  1;
  0,  1,  5,  6,  1;
  0,  1,  7, 15, 10,  1;
  0,  1,  9, 28, 35, 15,  1;
  0,  1, 11, 45, 84, 70, 21,  1;
		

Crossrefs

Formula

T(0,0)=1; T(n,0)=0 for n > 0; T(n+1,k+1) = binomial(2*n-k,k)for n >= 0 and k >= 0.
Sum_{k=0..n} T(n,k)*x^k = A001519(n), A047849(n), A165310(n), A165311(n), A165312(n), A165314(n), A165322(n), A165323(n), A165324(n) for x = 1,2,3,4,5,6,7,8,9 respectively.
Sum_{k=0..n} 2^k*T(n,k) = (4^n+2)/3.
Sum_{k=0..n} 2^(n-k)*T(n,k) = A001835(n).
Sum_{k=0..n} 3^k*4^(n-k)*T(n,k) = A054879(n). - Philippe Deléham, Aug 26 2006
Sum_{k=0..n} T(n,k)*(-1)^k*2^(3n-2k) = A143126(n). - Philippe Deléham, Oct 31 2008
Sum_{k=0..n} T(n,k)*(-1)^k*3^(n-k) = A138340(n)/4^n. - Philippe Deléham, Nov 01 2008
G.f.: (1-(y+1)*x)/(1-(2y+1)*x+y^2*x^2). - Philippe Deléham, Nov 01 2011
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-2), T(0,0) = T(1,1) = 1, T(1,0) = 0. - Philippe Deléham, Feb 19 2012