This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A121352 #25 Jan 29 2025 22:32:48 %S A121352 1,1,2,4,7,10,24,37,63,112,200,318,607,1058,1814,3247,6004,10316, %T A121352 19048,35478,63496,117023,223822,408121,766661,1484363,2775201, %U A121352 5270079,10357605,19714259,37970066,75439670,146103241,284719527,571706625,1123396477,2214903209 %N A121352 Number of different, not necessarily connected, unlabeled trivalent diagrams of size n. %C A121352 Equivalently, the number of isomorphism class of PSL_2(ZZ) actions on finite sets of size n. %C A121352 Also the number of (r,s) pair of permutations up to simultaneous conjugation, in S_n for which r is involutive i.e. r^2 = id and s is of weak order three i.e. s^3 = id. %H A121352 Andrew Howroyd, <a href="/A121352/b121352.txt">Table of n, a(n) for n = 0..1000</a> %H A121352 S. A. Vidal, <a href="https://arxiv.org/abs/math/0702223">Sur la Classification et le Dénombrement des Sous-groupes du Groupe Modulaire et de leurs Classes de Conjugaison</a> (in French), arXiv:0702223 [math.CO], 2006. %F A121352 Euler transform of A121350. - _Andrew Howroyd_, Jan 29 2025 %p A121352 mu := k -> `if`( k mod 2 = 0, 2/k, 1/k ) : nu := k -> `if`( k mod 3 = 0, 3/k, 1/k ) : u := (k,n) -> add(mu(k)^(n-2*k2)/(n-2*k2)!/k2!/(2*k)^k2,k2=0..floor(n/ 2)) : v := (k,n) -> add(nu(k)^(n-3*k3)/(n-3*k3)!/k3!/(3*k)^k3,k3=0..floor(n/ 3)) : N := 100 : ZF := 1 : for k from N to 1 by -1 do ZF := rem(ZF * add(n!*k^n*u(k,n)*v(k,n)*t^(k*n), n = 0..floor(N/ k)),t^(N+1),t) ; end do : sort(ZF,t, ascending); %t A121352 max = 34; mu[k_] := If[Mod[k, 2] == 0, 2/k, 1/k]; nu[k_] := If[Mod[k, 3] == 0, 3/k, 1/k]; u[k_, n_] := Sum[ mu[k]^(n - 2*k2) / (((n - 2*k2)!*k2!)*(2*k)^k2), {k2, 0, Floor[n/2]}]; v[k_, n_] := Sum[ nu[k]^(n - 3*k3) / (((n - 3*k3)!*k3!)*(3*k)^k3), {k3, 0, Floor[n/3]}]; ZF = 1; For[k = max, k >= 1, k--, ZF = PolynomialMod[ ZF*Sum[ n!*k^n*u[k, n]*v[k, n]*t^(k*n), {n, 0, Floor[max/k]}], t^(max + 1)]]; CoefficientList[ZF, t](* _Jean-François Alcover_, Dec 05 2012, translated from Samuel Vidal's Maple program *) %o A121352 (PARI) %o A121352 D(m,k)={my(g=gcd(m,k)); sumdiv(g, d, my(j=m/d); x^j*eulerphi(d)*k^(j-1)/j)} %o A121352 seq(n)={Vec(prod(k=1, n, my(A=O(x^(n\k+1)), p=serconvol(exp(A + D(1,k) + D(3,k)), exp(A + D(1,k) + D(2,k)))); sum(r=0, n\k, r!*polcoef(p,r)/(k^r)*x^(k*r), O(x*x^n)) ))} \\ _Andrew Howroyd_, Jan 29 2025 %Y A121352 Not necessarily connected version of A121350. %Y A121352 Unlabeled version of A121357. %Y A121352 Cf. also A005133, A121355, A121356. %K A121352 nonn %O A121352 0,3 %A A121352 _Samuel A. Vidal_, Jul 23 2006 %E A121352 a(35) onwards from _Andrew Howroyd_, Jan 29 2025