cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121352 Number of different, not necessarily connected, unlabeled trivalent diagrams of size n.

This page as a plain text file.
%I A121352 #25 Jan 29 2025 22:32:48
%S A121352 1,1,2,4,7,10,24,37,63,112,200,318,607,1058,1814,3247,6004,10316,
%T A121352 19048,35478,63496,117023,223822,408121,766661,1484363,2775201,
%U A121352 5270079,10357605,19714259,37970066,75439670,146103241,284719527,571706625,1123396477,2214903209
%N A121352 Number of different, not necessarily connected, unlabeled trivalent diagrams of size n.
%C A121352 Equivalently, the number of isomorphism class of PSL_2(ZZ) actions on finite sets of size n.
%C A121352 Also the number of (r,s) pair of permutations up to simultaneous conjugation, in S_n for which r is involutive i.e. r^2 = id and s is of weak order three i.e. s^3 = id.
%H A121352 Andrew Howroyd, <a href="/A121352/b121352.txt">Table of n, a(n) for n = 0..1000</a>
%H A121352 S. A. Vidal, <a href="https://arxiv.org/abs/math/0702223">Sur la Classification et le Dénombrement des Sous-groupes du Groupe Modulaire et de leurs Classes de Conjugaison</a> (in French), arXiv:0702223 [math.CO], 2006.
%F A121352 Euler transform of A121350. - _Andrew Howroyd_, Jan 29 2025
%p A121352 mu := k -> `if`( k mod 2 = 0, 2/k, 1/k ) : nu := k -> `if`( k mod 3 = 0, 3/k, 1/k ) : u := (k,n) -> add(mu(k)^(n-2*k2)/(n-2*k2)!/k2!/(2*k)^k2,k2=0..floor(n/ 2)) : v := (k,n) -> add(nu(k)^(n-3*k3)/(n-3*k3)!/k3!/(3*k)^k3,k3=0..floor(n/ 3)) : N := 100 : ZF := 1 : for k from N to 1 by -1 do ZF := rem(ZF * add(n!*k^n*u(k,n)*v(k,n)*t^(k*n), n = 0..floor(N/ k)),t^(N+1),t) ; end do : sort(ZF,t, ascending);
%t A121352 max = 34; mu[k_] := If[Mod[k, 2] == 0, 2/k, 1/k]; nu[k_] := If[Mod[k, 3] == 0, 3/k, 1/k]; u[k_, n_] := Sum[ mu[k]^(n - 2*k2) / (((n - 2*k2)!*k2!)*(2*k)^k2), {k2, 0, Floor[n/2]}]; v[k_, n_] := Sum[ nu[k]^(n - 3*k3) / (((n - 3*k3)!*k3!)*(3*k)^k3), {k3, 0, Floor[n/3]}]; ZF = 1; For[k = max, k >= 1, k--, ZF = PolynomialMod[ ZF*Sum[ n!*k^n*u[k, n]*v[k, n]*t^(k*n), {n, 0, Floor[max/k]}], t^(max + 1)]]; CoefficientList[ZF, t](* _Jean-François Alcover_, Dec 05 2012, translated from Samuel Vidal's Maple program *)
%o A121352 (PARI)
%o A121352 D(m,k)={my(g=gcd(m,k)); sumdiv(g, d, my(j=m/d); x^j*eulerphi(d)*k^(j-1)/j)}
%o A121352 seq(n)={Vec(prod(k=1, n, my(A=O(x^(n\k+1)), p=serconvol(exp(A + D(1,k) + D(3,k)), exp(A + D(1,k) + D(2,k)))); sum(r=0, n\k, r!*polcoef(p,r)/(k^r)*x^(k*r), O(x*x^n)) ))} \\ _Andrew Howroyd_, Jan 29 2025
%Y A121352 Not necessarily connected version of A121350.
%Y A121352 Unlabeled version of A121357.
%Y A121352 Cf. also A005133, A121355, A121356.
%K A121352 nonn
%O A121352 0,3
%A A121352 _Samuel A. Vidal_, Jul 23 2006
%E A121352 a(35) onwards from _Andrew Howroyd_, Jan 29 2025