This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A121356 #23 Oct 29 2018 07:16:20 %S A121356 1,2,24,192,600,15840,211680,1612800,43545600,961632000,11416204800, %T A121356 365957222400,10766518963200,191617884057600,6758061133824000, %U A121356 254086360399872000,6058779650187264000,241382293453357056000 %N A121356 Number of transitive PSL_2(ZZ) actions on a finite dotted and labeled set of size n. %C A121356 "Dotted" means having a distinguished element. - _N. J. A. Sloane_, Feb 06 2012 %C A121356 Equivalently, the number of different connected, dotted and labeled trivalent diagrams of size n. %H A121356 S. A. Vidal, <a href="https://arxiv.org/abs/math/0702223">Sur la Classification et le Dénombrement des Sous-groupes du Groupe Modulaire et de leurs Classes de Conjugaison</a>, (in French), arXiv:math/0702223 [math.CO], 2006. %F A121356 a(n) = A121355(n)*n. %F A121356 If A(z) = g.f. of a(n) and B(z) = g.f. of A121355 then A(z) = z d/dz B(z) (Euler operator). %p A121356 N := 100 : exs2:=sort(convert(taylor(exp(t+t^2/2),t,N+1),polynom),t, ascending) : exs3:=sort(convert(taylor(exp(t+t^3/3),t,N+1),polynom),t, ascending) : exs23:=sort(add(op(n+1,exs2)*op(n+1,exs3)/(t^n/ n!),n=0..N),t, ascending) : logexs23:=sort(convert(taylor(log(exs23),t,N+1),polynom),t, ascending) : sort(add(op(n,logexs23)*n!*n,n=1..N),t, ascending); %t A121356 m = 18; %t A121356 s2 = Exp[t + t^2/2] + O[t]^(m+1) // Normal; %t A121356 s3 = Exp[t + t^3/3] + O[t]^(m+1) // Normal; %t A121356 s = Sum[s2[[n+1]] s3[[n+1]]/(t^n/n!), {n, 0, m}]; %t A121356 CoefficientList[Log[s] + O[t]^(m+1), t] Range[0, m]! Range[0, m] // Rest (* _Jean-François Alcover_, Sep 02 2018, from Maple *) %o A121356 (PARI) N=18; x='x+O('x^(N+1)); %o A121356 A121357_ser = serconvol(serlaplace(exp(x+x^2/2)), serlaplace(exp(x+x^3/3))); %o A121356 A121355_ser = serlaplace(log(serconvol(A121357_ser, exp(x)))); %o A121356 Vec(x*A121355_ser') \\ _Gheorghe Coserea_, May 10 2017 %Y A121356 Labeled version of A005133. %Y A121356 Labeled and dotted version of A121350. %Y A121356 Dotted version of A121355. %Y A121356 Connected and dotted version of A121357. %Y A121356 Connected, labeled and dotted version of A121352. %K A121356 nonn %O A121356 1,2 %A A121356 _Samuel A. Vidal_, Jul 23 2006