cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121357 Number of different, not necessarily connected, labeled trivalent diagrams of size n.

This page as a plain text file.
%I A121357 #33 Sep 04 2021 19:17:22
%S A121357 1,1,2,12,90,546,6156,81432,942012,15114780,294765336,5069224656,
%T A121357 108842183352,2770895886552,64609245619920,1742542175582496,
%U A121357 55074355772360976,1626315165597840912,53331321825434963232
%N A121357 Number of different, not necessarily connected, labeled trivalent diagrams of size n.
%C A121357 Equivalently, the number of PSL_2(ZZ) actions on a finite labeled set of size n.
%C A121357 Also the number of (r,s) pair of permutations in S_n for which r is involutive, i.e., r^2 = id and s is of weak order three, i.e., s^3 = id.
%H A121357 S. A. Vidal, <a href="https://arxiv.org/abs/math/0702223">Sur la Classification et le Denombrement des Sous-groupes du Groupe Modulaire et de leurs Classes de Conjugaison</a>, (in French), arXiv:math/0702223 [math.CO] 2006.
%F A121357 If A(z) = g.f. of a(n) and B(z) = g.f. of A121355 then A(z) = exp(B(z)).
%F A121357 Six-term linear recurrence: (n^3 + 12*n^2 + 47*n + 61)*a(n + 6) = (29040 + 239224*n^2 + 127628*n + 20715*n^6 + 252267*n^3 + 166304*n^4 + 71889*n^5 + 33*n^9 + 3943*n^7 + 476*n^8 + n^10)*a(n) + (441*n^4 + 3*n^6 + 2160 + 57*n^5 + 4572*n + 3948*n^2 + 1779*n^3)*a(n + 1) + (34920 + 61314*n + 45886*n^2 + 18989*n^3 + 4697*n^4 + 695*n^5 + 57*n^6 + 2*n^7)*a(n + 2) + (19640 + 79*n^5 + 3*n^6 + 861*n^4 + 27598*n + 16084*n^2 + 4975*n^3)*a(n + 3) + (17*n^3 + 425 + n^4 + 350*n + 113*n^2)*a(n + 4) + (1 + 20*n + 9*n^2 + n^3)*a(n + 5) with n = 0, 1, ...
%F A121357 a(n) = A000085(n) * A001470(n). - _Mark van Hoeij_, May 13 2013
%p A121357 N := 100 : exs2:=sort(convert(taylor(exp(t+t^2/2),t,N+1),polynom),t, ascending) : exs3:=sort(convert(taylor(exp(t+t^3/3),t,N+1),polynom),t, ascending) : exs23:=sort(add(op(n+1,exs2)*op(n+1,exs3)/(t^n/ n!),n=0..N),t, ascending) : sort(add(op(n+1,exs23)*n!,n=0..N),t, ascending);
%t A121357 m = 18; exs2 = Series[Exp[t + t^2/2], {t, 0, m + 1}] // Normal; exs3 = Series[Exp[t + t^3/3], {t, 0, m + 1}] // Normal; exs23 = Sum[exs2[[n + 1]]*exs3[[n + 1]]/(t^n/n!), {n, 0, m}]; CoefficientList[ Sum[exs23[[n + 1]]*n!, {n, 0, m}], t] (* _Jean-François Alcover_, Dec 05 2012, translated from Samuel Vidal's Maple program *)
%o A121357 (PARI) N=19; x='x+O('x^N);
%o A121357 Vec(serconvol(serlaplace(exp(x+x^2/2)), serlaplace(exp(x+x^3/3)))) \\ _Gheorghe Coserea_, May 10 2017
%Y A121357 Unconnected version of A121355.
%Y A121357 Labeled version of A121352.
%Y A121357 Labeled, unconnected version of A121350.
%Y A121357 Cf. also A005133, A121356.
%K A121357 nonn
%O A121357 0,3
%A A121357 _Samuel A. Vidal_, Jul 23 2006