This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A121361 #16 Feb 16 2025 08:33:02 %S A121361 1,1,1,1,0,1,1,2,1,0,1,1,1,1,1,0,1,1,1,0,2,2,1,1,0,1,0,1,2,0,1,1,0,2, %T A121361 0,2,1,0,1,1,1,1,2,1,0,1,2,1,0,0,1,1,1,1,0,0,2,1,2,0,1,1,1,2,1,1,0,1, %U A121361 1,0,1,1,2,1,0,1,1,3,0,0,1,0,1,0,0,2,1,1,1,1,1,2,0,1,0,2,2,1,3,0,0,0,1,0,0 %N A121361 Expansion of f(x^1, x^5) * psi(x^2) in powers of x where psi(), f() are Ramanujan theta functions. %C A121361 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). %H A121361 G. C. Greubel, <a href="/A121361/b121361.txt">Table of n, a(n) for n = 0..1000</a> %H A121361 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>, 2019. %H A121361 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>. %F A121361 Expansion of q^(-7/12) * eta(q^2) * eta(q^3) * eta(q^4) * eta(q^12) / %F A121361 (eta(q) * eta(q^6)) in powers of q. %F A121361 Euler transform of period 12 sequence [ 1, 0, 0, -1, 1, 0, 1, -1, 0, 0, 1, -2, ...]. %F A121361 2*a(n) = A093829(12*n + 7). %F A121361 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(3)) = 0.906899... (A093766). - _Amiram Eldar_, Jan 20 2025 %e A121361 G.f. = 1 + x + x^2 + x^3 + x^5 + x^6 + 2*x^7 + x^8 + x^10 + x^11 + ... %e A121361 G.f. = q^7 + q^19 + q^31 + q^43 + q^67 + q^79 + 2*q^91 + q^103 + ... %t A121361 a[ n_] := SeriesCoefficient[ QPochhammer[ -x^1, x^6] QPochhammer[ -x^5, x^6] QPochhammer[ x^6] EllipticTheta[ 2, 0, x] / (2 x^(1/4)), {x, 0, n}]; (* _Michael Somos_, Sep 02 2014 *) %o A121361 (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A) / (eta(x + A) * eta(x^6 + A)), n))}; %Y A121361 Cf. A093766, A093829. %Y A121361 Cf. A000122, A000700, A010054, A121373. %K A121361 nonn %O A121361 0,8 %A A121361 _Michael Somos_, Jul 16 2006