This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A121370 #27 Oct 30 2014 07:13:54 %S A121370 1,3,1,7,8,19,13,4,16,3,42,24,434,84,160,579,475,529,2450,2644,3928, %T A121370 558,13680,7146,1408,3003,2369,55000,83873 %N A121370 Least number k such that (k*M(n))^2 + k*M(n) - 1 is prime with M(i)=i-th Mersenne prime. %F A121370 a(n) is the least k >= 1 for which k*Mp(n)*(k*Mp(n) + 1) - 1 is prime, where Mp(n) = A000668(n) (see Name). - _Wolfdieter Lang_, Oct 26 2014 %e A121370 M(4)=2^7-1=127 %e A121370 127^2+127-1=16255 composite %e A121370 (2*127)^2+2*127-1=64769 composite %e A121370 (3*127)^2+3*127-1=145541 composite %e A121370 (4*127)^2+4*127-1=258571 composite %e A121370 (5*127)^2+5*127-1=403859 composite %e A121370 (6*127)^2+6*127-1=581405 composite %e A121370 (7*127)^2+7*127-1=791209 prime so k(4)=7 %e A121370 1*(2^2-1)*(1*(2^2-1)+1)-1=11 prime, 2^2-1 first Mersenne prime, a(1)=1. %e A121370 3*(2^3-1)*(3*(2^3-1)+1)-1=461 prime, 2^3-1 second Mersenne prime, a(2)=3. %e A121370 n=6: Mp(6) = 131071 and 19*131071*(19*131071 + 1) - 1 = 6201840632149 which is prime, and for k=1..18 no prime appears. - _Wolfdieter Lang_, Oct 26 2014 %o A121370 (PARI) lista() = {v = readvec("b000043.txt"); for (i=1, #v, mp = 2^v[i] - 1; k=1; while (!isprime(k*mp*(k*mp + 1) - 1), k++); print1(k, ", "););} \\ _Michel Marcus_, Oct 27 2014 %Y A121370 Cf. A121371. %Y A121370 Cf. A000043 (Mersenne exponents), A000668 (Mersenne primes). %Y A121370 Cf. A137906, A137907, A137909. %K A121370 hard,more,nonn %O A121370 1,2 %A A121370 _Pierre CAMI_, Jul 24 2006 %E A121370 a(21) corrected by _Pierre CAMI_, Mar 04 2014 %E A121370 a(27)-a(29) by _Pierre CAMI_, Oct 11 2014 %E A121370 Checked for n = 1..15 by _Wolfdieter Lang_, Oct 26 2014 %E A121370 Merged with A137908 by _Vaclav Kotesovec_, Oct 30 2014