cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121440 Matrix inverse of triangle A121335, where A121335(n,k) = C( n*(n+1)/2 + n-k + 1, n-k) for n>=k>=0.

This page as a plain text file.
%I A121440 #3 Mar 30 2012 18:36:58
%S A121440 1,-3,1,0,-5,1,-12,4,-8,1,-129,-22,18,-12,1,-1785,-238,-51,51,-17,1,
%T A121440 -30291,-3634,-345,-161,115,-23,1,-608565,-66750,-6111,-285,-505,225,
%U A121440 -30,1,-14112744,-1432296,-122227,-9177,665,-1387,399,-38,1,-370746528,-35129022,-2818543,-196037,-14335,4841,-3337,658
%N A121440 Matrix inverse of triangle A121335, where A121335(n,k) = C( n*(n+1)/2 + n-k + 1, n-k) for n>=k>=0.
%C A121440 A triangle having similar properties and complementary construction is the dual triangle A121436.
%F A121440 T(n,k) = [A121412^(-n*(n+1)/2 - 2)](n,k) for n>=k>=0; i.e., row n of A121335^-1 equals row n of matrix power A121412^(-n*(n+1)/2 - 2).
%e A121440 Triangle, A121335^-1, begins:
%e A121440 1;
%e A121440 -3, 1;
%e A121440 0, -5, 1;
%e A121440 -12, 4, -8, 1;
%e A121440 -129, -22, 18, -12, 1;
%e A121440 -1785, -238, -51, 51, -17, 1;
%e A121440 -30291, -3634, -345, -161, 115, -23, 1;
%e A121440 -608565, -66750, -6111, -285, -505, 225, -30, 1;
%e A121440 -14112744, -1432296, -122227, -9177, 665, -1387, 399, -38, 1; ...
%e A121440 Triangle A121412 begins:
%e A121440 1;
%e A121440 1, 1;
%e A121440 3, 1, 1;
%e A121440 18, 4, 1, 1;
%e A121440 170, 30, 5, 1, 1; ...
%e A121440 Row 3 of A121335^-1 equals row 3 of A121412^(-8), which begins:
%e A121440 1;
%e A121440 -8, 1;
%e A121440 12, -8, 1;
%e A121440 -12, 4, -8, 1; ...
%e A121440 Row 4 of A121335^-1 equals row 4 of A121412^(-12), which begins:
%e A121440 1;
%e A121440 -12, 1;
%e A121440 42, -12, 1;
%e A121440 -34, 30, -12, 1;
%e A121440 -129, -22, 18, -12, 1; ...
%o A121440 (PARI) /* Matrix Inverse of A121335 */ {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(r*(r-1)/2+r-c+1,r-c)))); return((M^-1)[n+1,k+1])}
%Y A121440 Cf. A121335 (matrix inverse); A121412; variants: A121438, A121439, A121441; A121436 (dual).
%K A121440 sign,tabl
%O A121440 0,2
%A A121440 _Paul D. Hanna_, Aug 29 2006