cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121443 Sum of divisors d of n which are odd and n/d is not divisible by 3.

This page as a plain text file.
%I A121443 #28 Jan 03 2023 09:22:18
%S A121443 1,1,3,1,6,3,8,1,9,6,12,3,14,8,18,1,18,9,20,6,24,12,24,3,31,14,27,8,
%T A121443 30,18,32,1,36,18,48,9,38,20,42,6,42,24,44,12,54,24,48,3,57,31,54,14,
%U A121443 54,27,72,8,60,30,60,18,62,32,72,1,84,36,68,18,72,48,72,9,74,38,93,20,96,42
%N A121443 Sum of divisors d of n which are odd and n/d is not divisible by 3.
%C A121443 Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
%D A121443 Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 86, Eq. (33.124).
%H A121443 Amiram Eldar, <a href="/A121443/b121443.txt">Table of n, a(n) for n = 1..10000</a>
%F A121443 Expansion of c(q) * c(q^2) / 9 where c(q) is a cubic AGM theta function.
%F A121443 Euler transform of period 6 sequence [ 1, 2, -2, 2, 1, -4, ...].
%F A121443 Expansion of (eta(q^3) * eta(q^6))^3 / (eta(q) * eta(q^2)) in powers of q.
%F A121443 Multiplicative with a(2^e) = 1, a(3^e) = 3^e, a(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.
%F A121443 G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^4 - u*w * (u-2*v) * (v-2*w).
%F A121443 G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^3*u6 + 2*u2^3*u3 + 3*u2^2*u3^2 + 6*u1*u2*u3*u6 + 48*u2^2*u6^2 - 3*u1^2*u2*u6 - 3*u1*u2*u3^2 - 24*u2^2*u3*u6 - 30*u1*u2*u6^2. - _Michael Somos_, Apr 18 2007
%F A121443 G.f.: x * Product_{k>0} ((1 - x^(3*k)) * (1 - x^(6*k)))^3 / ((1 - x^k) * (1 - x^(2*k))) = Sum_{k>0} k * x^k * (1 - x^k) / (1 + x^(3*k)).
%F A121443 a(2*n) = a(n), a(2*n + 1) = A185717(n). a(3*n) = 3*a(n). a(6*n + 5) = 6 * A098098(n).
%F A121443 G.f.: Sum_{n = -inf..inf} (-1)^n*x^(3*n+1)/(1 - x^(3*n+1))^2. Cf. A124340. - _Peter Bala_, Jan 06 2021
%F A121443 Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/27 = 0.3655409... (A291050). - _Amiram Eldar_, Nov 17 2022
%F A121443 Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-2^(1-s)-3^(-s)+2^(1-s)*3^(-s)). - _Amiram Eldar_, Jan 03 2023
%e A121443 G.f. = q + q^2 + 3*q^3 + q^4 + 6*q^5 + 3*q^6 + 8*q^7 + q^8 + 9*q^9 + 6*q^10 + ...
%t A121443 a[ n_] := If[ n < 1, 0, Sum[ d Mod[ d, 2] Boole[ Mod[ n/d, 3] > 0], {d, Divisors @n}]]; (* _Michael Somos_, Jun 12 2014 *)
%t A121443 a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^3] QPochhammer[ q^6])^3 / (QPochhammer[ q] QPochhammer[ q^2]), {q, 0, n}]; (* _Michael Somos_, Jun 12 2014 *)
%t A121443 f[p_, e_] := Which[p == 2, 1, p == 3, p^e, p > 3, (p^(e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 12 2020 *)
%o A121443 (PARI) {a(n) = if( n<1, 0, sumdiv(n, d, (d%2) * (n/d%3 > 0) * d))};
%o A121443 (PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^3 + A) * eta(x^6 + A))^3 / (eta(x + A) * eta(x^2 + A)), n))};
%o A121443 (Sage) A = ModularForms( Gamma0(6), 2, prec=80) . basis(); A[1] + A[2]; # _Michael Somos_, Jun 12 2014
%o A121443 (Magma) A := Basis( ModularForms( Gamma0(6), 2), 80); A[2] + A[3]; /* _Michael Somos_, Jun 12 2014 */
%Y A121443 Cf. A004016, A005882, A005928, A098098, A185717, A291050.
%K A121443 nonn,mult
%O A121443 1,3
%A A121443 _Michael Somos_, Jul 30 2006, Apr 18 2007