A121468 Triangle read by rows: T(n,k) is the number of k-cell columns in all directed column-convex polyominoes of area n (1<=k<=n).
1, 2, 1, 6, 3, 1, 18, 9, 4, 1, 53, 28, 12, 5, 1, 154, 85, 38, 15, 6, 1, 443, 253, 117, 48, 18, 7, 1, 1264, 742, 352, 149, 58, 21, 8, 1, 3582, 2151, 1041, 451, 181, 68, 24, 9, 1, 10092, 6177, 3038, 1340, 550, 213, 78, 27, 10, 1, 28291, 17600, 8772, 3925, 1639, 649, 245, 88, 30, 11, 1
Offset: 1
Examples
Triangle starts: 1; 2,1; 6,3,1; 18,9,4,1; 53,28,12,5,1;
Links
- E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170, 1997, 211-217.
- E. Barcucci, R. Pinzani and R. Sprugnoli, Directed column-convex polyominoes by recurrence relations, Lecture Notes in Computer Science, No. 668, Springer, Berlin (1993), pp. 282-298.
- E. Deutsch and H. Prodinger, A bijection between directed column-convex polyominoes and ordered trees of height at most three, Theoretical Comp. Science, 307, 2003, 319-325.
Programs
-
Maple
F:=k->z^k*(1-z)^2*(1-3*z+z^2-k*z^2+k*z)/(1-3*z+z^2)^2: T:=(n,k)->coeff(series(F(k),z=0,25),z^n): for n from 1 to 12 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
Formula
T(n,k) = Sum(j*T(n-j,k),j=1..n-k)+k*fibonacci(2n-2k-1).
G.f. of column k: z^k*(1-z)^2*(1-3z+z^2-kz^2+kz)/(1-3z+z^2)^2.
Comments