cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121483 Number of peaks at odd level in all nondecreasing Dyck paths of semilength n. A nondecreasing Dyck path is a Dyck path for which the sequence of the altitudes of the valleys is nondecreasing.

This page as a plain text file.
%I A121483 #8 Jul 26 2022 11:55:41
%S A121483 1,2,6,19,56,167,487,1411,4047,11527,32617,91790,257065,716896,
%T A121483 1991792,5515535,15227846,41930133,115176023,315676425,863475561,
%U A121483 2357539227,6425887551,17487572124,47522431681,128969086382,349567320762
%N A121483 Number of peaks at odd level in all nondecreasing Dyck paths of semilength n. A nondecreasing Dyck path is a Dyck path for which the sequence of the altitudes of the valleys is nondecreasing.
%C A121483 a(n) = Sum(k*A121481(n,k),k=0..n).
%H A121483 E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, <a href="http://dx.doi.org/10.1016/S0012-365X(97)82778-1">Nondecreasing Dyck paths and q-Fibonacci numbers</a>, Discrete Math., 170, 1997, 211-217.
%H A121483 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (6,-9,-5,15,-1,-4,1).
%F A121483 G.f.: z(1-z)(1-3z+6z^3-3z^4)/[(1+z)(1-3z+z^2)^2*(1-z-z^2)].
%F A121483 Recurrence: (n^2 - 5*n - 20)*a(n) = (3*n^2 - 12*n - 79)*a(n-1) + (n^2 - 7*n - 16)*a(n-2) - (5*n^2 - 19*n - 138)*a(n-3) - (n^2 - 6*n - 31)*a(n-4) + (n^2 - 3*n - 24)*a(n-5). - _Vaclav Kotesovec_, Mar 20 2014
%F A121483 a(n) ~ (sqrt(5)-1) * (3+sqrt(5))^n * n / (5*2^(n+2)). - _Vaclav Kotesovec_, Mar 20 2014
%e A121483 a(2)=2 because in UDUD and UUDD we have altogether 2 peaks at odd level; here U=(1,1) and D=(1,-1).
%p A121483 G:=z*(1-z)*(1-3*z+6*z^3-3*z^4)/(1+z)/(1-3*z+z^2)^2/(1-z-z^2): Gser:=series(G,z=0,33): seq(coeff(Gser,z,n),n=1..30);
%t A121483 Rest[CoefficientList[Series[x*(1-x)*(1-3*x+6*x^3-3*x^4)/(1+x)/(1-3*x+x^2)^2/(1-x-x^2), {x, 0, 20}], x]] (* _Vaclav Kotesovec_, Mar 20 2014 *)
%Y A121483 Cf. A121481, A121486, A038731.
%K A121483 nonn
%O A121483 1,2
%A A121483 _Emeric Deutsch_, Aug 02 2006