cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121486 Number of peaks at even level in all nondecreasing Dyck paths of semilength n. A nondecreasing Dyck path is a Dyck path for which the sequence of the altitudes of the valleys is nondecreasing.

This page as a plain text file.
%I A121486 #12 Jul 26 2022 11:46:10
%S A121486 0,1,4,13,43,132,400,1184,3461,9999,28634,81383,229860,645731,1805582,
%T A121486 5028189,13952221,38590922,106434540,292792026,803565215,2200694791,
%U A121486 6015268164,16412564173,44708036568,121600924117,330277253560
%N A121486 Number of peaks at even level in all nondecreasing Dyck paths of semilength n. A nondecreasing Dyck path is a Dyck path for which the sequence of the altitudes of the valleys is nondecreasing.
%H A121486 E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, <a href="http://dx.doi.org/10.1016/S0012-365X(97)82778-1">Nondecreasing Dyck paths and q-Fibonacci numbers</a>, Discrete Math., 170, 1997, 211-217.
%H A121486 E. Barcucci, R. Pinzani and R. Sprugnoli, <a href="http://dx.doi.org/10.1007/3-540-56610-4_71">Directed column-convex polyominoes by recurrence relations</a>, Lecture Notes in Computer Science, No. 668, Springer, Berlin (1993), pp. 282-298.
%H A121486 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (6,-9,-5,15,-1,-4,1).
%F A121486 a(n) = Sum(k*A121484(n,k),k=0..n-1).
%F A121486 G.f.: z^2*(1-z)(1-z-3z^2+3z^3-z^4)/[(1+z)(1-z-z^2)(1-3z+z^2)^2].
%F A121486 a(n) ~ (sqrt(5)-1) * (3+sqrt(5))^n * n / (5 * 2^(n+2)). - _Vaclav Kotesovec_, Mar 20 2014
%F A121486 20*a(n) = -8*(-1)^n +10*(2*A001871(n)-5*A001871(n-1))+5*(4*A000045(n+1)-7*A000045(n))-3*(4*A001906(n+1)+9*A001906(n)). - _R. J. Mathar_, Jul 26 2022
%e A121486 a(3)=4 because in UDUDUD, UDUU|DD, UU|DDUD, UU|DU|DD and UUUDDD we have altogether 4 peaks at even level (shown by a |); here U=(1,1) and D=(1,-1).
%p A121486 G:=z^2*(1-z)*(1-z-3*z^2+3*z^3-z^4)/(1+z)/(1-z-z^2)/(1-3*z+z^2)^2: Gser:=series(G,z=0,33): seq(coeff(Gser,z,n),n=1..30);
%t A121486 Rest[CoefficientList[Series[x^2*(1-x)*(1-x-3*x^2+3*x^3-x^4)/(1+x)/(1-x-x^2)/(1-3*x+x^2)^2, {x, 0, 20}], x]] (* _Vaclav Kotesovec_, Mar 20 2014 *)
%Y A121486 Cf. A121484, A121483, A038731.
%K A121486 nonn
%O A121486 1,3
%A A121486 _Emeric Deutsch_, Aug 02 2006