cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121497 Binomial transform of the characteristic function of the prime numbers (A010051).

This page as a plain text file.
%I A121497 #37 Nov 14 2024 04:11:28
%S A121497 0,0,1,4,10,21,41,78,148,282,537,1013,1882,3446,6267,11468,21416,
%T A121497 41209,81771,166042,340994,700570,1429375,2886777,5771828,11453105,
%U A121497 22638215,44742141,88681674,176545766,352992931,707922077,1421120880,2849433326
%N A121497 Binomial transform of the characteristic function of the prime numbers (A010051).
%C A121497 This is the binomial transform of the sequence {0,0,1,1,0,1,0,1,...}. Sequence A052467, the binomial transform of the sequence {0,1,1,0,1,0,1,...} is very similar. In fact, the first differences of this sequence yields A052467.
%C A121497 The number of pernicious numbers (A052294) less than 2^n. Although the graph looks almost like 2^n, the graph of a(n)/2^n has quite a bit of variation. - _T. D. Noe_, Mar 14 2009
%C A121497 a(n)/2^n is the probability that a series of Bernoulli trials with probability of success equal to 1/2 will result in a prime number of successes. Cf. A178851. - _Eric M. Schmidt_, Jul 13 2012
%C A121497 a(n) equals the number of subsets of [n] whose cardinalities are prime. - _Ivan N. Ianakiev_, Jul 14 2019
%C A121497 Upper and lower bounds are provided by Kim and Sinha (see links). - _Jeffrey Shallit_, Nov 14 2024
%H A121497 T. D. Noe and Charles R Greathouse IV, <a href="/A121497/b121497.txt">Table of n, a(n) for n = 0..3324</a> (terms up to 1000 from Noe)
%H A121497 Sungjin Kim and Nilotpal Kanti Sinha, <a href="https://math.colgate.edu/~integers/u99/u99.pdf">Binomial probability of prime number of successes</a>, INTEGERS 20 (2020), #A99.
%H A121497 Vaclav Kotesovec, <a href="/A121497/a121497_1.jpg">Plot of a(n) / (2^n/log(n/2)) for n = 2..10000</a>
%F A121497 a(n) = Sum_{i=1..pi(n)} binomial(n,prime(i)), where pi(n) is A000720(n), the number of primes <= n.
%F A121497 E.g.f.: exp(x) * (x^2/2! + x^3/3! + x^5/5! + ...) - _Eric M. Schmidt_, Jul 14 2012
%F A121497 G.f.: Sum_{p prime} x^p/(1-x)^(p+1). - _Robert Israel_, Sep 27 2018
%p A121497 Primes:= select(isprime, [2,seq(i,i=3..100,2)]):
%p A121497 G:= add((z/(1-z))^p/(1-z),p=Primes):
%p A121497 S:= series(G,z,101):
%p A121497 seq(coeff(S,z,i),i=0..100); # _Robert Israel_, Sep 27 2018
%t A121497 Table[Sum[Binomial[n,Prime[i]], {i,PrimePi[n]}], {n,40}]
%o A121497 (PARI) a(n)=my(s);forprime(p=2,n,s+=binomial(n,p));s \\ _Charles R Greathouse IV_, Mar 22 2013
%Y A121497 Cf. A000720, A010051, A052294, A052467, A178851
%K A121497 nonn
%O A121497 0,4
%A A121497 _T. D. Noe_, Aug 03 2006
%E A121497 a(0) inserted by _Franklin T. Adams-Watters_, Jul 13 2012