A121498 Numerators of partial alternating sums of Catalan numbers scaled by powers of 1/(29^2) = 1/841.
1, 840, 706442, 594117717, 499653000011, 420208173009209, 353395073500744901, 297205256814126461312, 249949620980680353964822, 210207631244752177684410440, 176784617876836581432589196836
Offset: 0
Examples
Rationals r(n): [1, 840/841, 706442/707281, 594117717/594823321, 499653000011/500246412961, 420208173009209/420707233300201,...].
Links
- W. Lang: Rationals r(n), limit.
Programs
-
Maple
The limit lim_{n->infinity}(r(n) := rIV(2;n)) = 29*(-21 + 13*phi) = 29/phi^7 = 0.998813758709 (maple10, 10 digits).
Formula
a(n)=numerator(r(n)) with r(n) := rIV(p=3,n) = sum(((-1)^k)*C(k)/L(2*3+1)^(2*k),k=0..n), with L(7)=29 and C(k):=A000108(k) (Catalan). The rationals r(n) are given in lowest terms.
Comments