A121506 Minimal polygon values appearing in a certain polygon problem leading to an approximation of Pi.
3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 22, 24, 25, 27, 28, 30, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 45, 47, 48, 49, 51, 52, 54, 55, 56, 58, 59, 61, 62, 64, 65, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66
Offset: 3
Examples
m=15, a(15)=21=n: (Fin(21)+Fout(15))/2 = 3.14163887818241 (maple10, 15 digits) leads to a relative error E(21,15)= 0.0000147(rounded). m=7, a(7)=9=n: F(9,7) leads to error E(9,7)= 0.003122 (rounded). This is larger than E(8,6), therefore the m value 7 does not appear in A121502. m=6, a(6)=8=n: (Fin(8)+Fout(6))/2 = sqrt(2) + sqrt(3) has relative error E(8,6)= 0.001487 (rounded). All other inscribed n-gons with circumscribed hexagon lead to a larger relative error.
Crossrefs
Cf. A121502 (values for m for which relative errors E(n, m) decrease).
Formula
a(m)=min(abs(F(n,m)),n=3..infinity), m>=3 (checked for n=3..3+500), with F(nm):= ((Fin(n)+Fout(m))/2-Pi)/Pi), where Fin(n):=(n/2)*sin(2*Pi/n) and Fout(m):= m*tan(Pi/m). Fin(n) is the area of the regular n-gon inscribed in the unit circle. Fout(n) is the area of an regular n-gon circumscribing the unit circle. E(n,m) = (F(n,m)-pi)/pi is the relative error.
Comments