cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121530 Number of double rises at an odd level in all nondecreasing Dyck paths of semilength n. A nondecreasing Dyck path is a Dyck path for which the sequence of the altitudes of the valleys is nondecreasing.

This page as a plain text file.
%I A121530 #11 Jul 26 2022 11:48:51
%S A121530 0,1,4,14,47,148,454,1359,4004,11644,33521,95696,271300,764605,
%T A121530 2143964,5985186,16643779,46124692,127433562,351106955,964976460,
%U A121530 2646158176,7241414949,19779499584,53933402472,146828245753,399137621524
%N A121530 Number of double rises at an odd level in all nondecreasing Dyck paths of semilength n. A nondecreasing Dyck path is a Dyck path for which the sequence of the altitudes of the valleys is nondecreasing.
%C A121530 a(n)=Sum(k*A121529(n,k), k>=0). a(n)+A121532(n)=A054444(n-2).
%H A121530 E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, <a href="http://dx.doi.org/10.1016/S0012-365X(97)82778-1">Nondecreasing Dyck paths and q-Fibonacci numbers</a>, Discrete Math., 170, 1997, 211-217.
%H A121530 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (6,-9,-5,15,-1,-4,1)
%F A121530 G.f.=z^2*(1-2z-z^2+4z^3-3z^4)/[(1+z)(1-3z+z^2)^2*(1-z-z^2)].
%F A121530 a(n) ~ (3-sqrt(5)) * (3+sqrt(5))^n * n / (5 * 2^(n+1)). - _Vaclav Kotesovec_, Mar 20 2014
%F A121530 Equivalently, a(n) ~ phi^(2*n-2) * n / 5, where phi = A001622 is the golden ratio. - _Vaclav Kotesovec_, Dec 06 2021
%e A121530 a(3)=4 because we have UDUDUD, UDU/UDD, U/UDDUD, U/UDUDD and U/UUDDD, the double rises at an odd level being indicated by a / (U=(1,1), D=(1,-1)).
%p A121530 g:=z^2*(1-2*z-z^2+4*z^3-3*z^4)/(1+z)/(1-3*z+z^2)^2/(1-z-z^2): gser:=series(g,z=0,33): seq(coeff(gser,z,n),n=1..30);
%t A121530 Rest[CoefficientList[Series[x^2*(1-2*x-x^2+4*x^3-3*x^4)/(1+x)/(1-3*x+x^2)^2 /(1-x-x^2), {x, 0, 20}], x]] (* _Vaclav Kotesovec_, Mar 20 2014 *)
%Y A121530 Cf. A121529, A121532, A054444.
%K A121530 nonn
%O A121530 1,3
%A A121530 _Emeric Deutsch_, Aug 05 2006