cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121532 Number of double rises at an even level in all nondecreasing Dyck paths of semilength n. A nondecreasing Dyck path is a Dyck path for which the sequence of the altitudes of the valleys is nondecreasing.

This page as a plain text file.
%I A121532 #15 Sep 08 2022 08:45:27
%S A121532 0,0,1,6,24,87,290,926,2861,8640,25634,75015,217100,622620,1772097,
%T A121532 5011394,14093980,39448623,109954398,305344314,845165725,2332485420,
%U A121532 6420202246,17629525871,48304680504,132092031672,360557665825
%N A121532 Number of double rises at an even level in all nondecreasing Dyck paths of semilength n. A nondecreasing Dyck path is a Dyck path for which the sequence of the altitudes of the valleys is nondecreasing.
%H A121532 E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, <a href="http://dx.doi.org/10.1016/S0012-365X(97)82778-1">Nondecreasing Dyck paths and q-Fibonacci numbers</a>, Discrete Math., 170, 1997, 211-217.
%H A121532 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (6,-9,-5,15,-1,-4,1).
%F A121532 a(n) = Sum_{k>=0} k*A121531(n,k).
%F A121532 a(n) = A054444(n-2) - A121530(n).
%F A121532 G.f.: x^3*(1-3*x^2+2*x^3-x^4)/((1+x)*(1-3*x+x^2)^2*(1-x-x^2)). [Corrected by _Georg Fischer_, May 24 2019]
%F A121532 a(n) ~ (3-sqrt(5)) * (3+sqrt(5))^n * n / (5 * 2^(n+1)). - _Vaclav Kotesovec_, Mar 20 2014
%F A121532 Equivalently, a(n) ~ phi^(2*n-2) * n / 5, where phi = A001622 is the golden ratio. - _Vaclav Kotesovec_, Dec 06 2021
%e A121532 a(3)=1 because we have UDUDUD, UDUUDD, UUDDUD, UUDUDD and UU/UDDD, the double rises at an odd level being indicated by a / (U=(1,1), D=(1,-1)).
%p A121532 g:=z^3*(1-3*z^2+2*z^3-z^4)/(1+z)/(1-3*z+z^2)^2/(1-z-z^2): gser:=series(g,z=0,35): seq(coeff(gser,z,n),n=1..32);
%t A121532 Rest[CoefficientList[Series[x^3*(1-3*x^2+2*x^3-x^4)/(1+x)/(1-3*x+x^2)^2/(1-x-x^2), {x, 0, 30}], x]] (* _Vaclav Kotesovec_, Mar 20 2014 *)
%o A121532 (PARI) my(x='x+O('x^30)); concat([0,0], Vec(x^3*(1-3*x^2+2*x^3-x^4)/((1+x)*(1-3*x+x^2)^2*(1-x-x^2)))) \\ _G. C. Greubel_, May 24 2019
%o A121532 (Magma) R<x>:=PowerSeriesRing(Integers(), 30); [0,0] cat Coefficients(R!( x^3*(1-3*x^2+2*x^3-x^4)/((1+x)*(1-3*x+x^2)^2*(1-x-x^2)) )); // _G. C. Greubel_, May 24 2019
%o A121532 (Sage) a=(x^3*(1-3*x^2+2*x^3-x^4)/((1+x)*(1-3*x+x^2)^2*(1-x-x^2)) ).series(x, 30).coefficients(x, sparse=False); a[1:] # _G. C. Greubel_, May 24 2019
%Y A121532 Cf. A121530, A121531, A054444.
%K A121532 nonn
%O A121532 1,4
%A A121532 _Emeric Deutsch_, Aug 05 2006