cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121545 Coefficients of Taylor series expansion of the operad Prim L.

This page as a plain text file.
%I A121545 #64 Oct 12 2023 07:46:53
%S A121545 0,1,1,4,17,81,412,2192,12049,67891,390041,2276176,13455356,80402284,
%T A121545 484865032,2947107384,18036248337,111046920567,687345582787,
%U A121545 4274642610932,26697307240777,167377288848977
%N A121545 Coefficients of Taylor series expansion of the operad Prim L.
%H A121545 Olivier Gérard and Vincenzo Librandi, <a href="/A121545/b121545.txt">Table of n, a(n) for n = 0..200</a> (first 51 terms from Olivier Gérard)
%H A121545 Francesca Aicardi, <a href="https://arxiv.org/abs/2310.07317">Fuss-Catalan Triangles</a>, arXiv:2310.07317 [math.CO], 2023.
%H A121545 Paul Barry, <a href="https://arxiv.org/abs/2104.01644">Centered polygon numbers, heptagons and nonagons, and the Robbins numbers</a>, arXiv:2104.01644 [math.CO], 2021.
%H A121545 Isaac DeJager, Madeleine Naquin, and Frank Seidl, <a href="https://www.valpo.edu/mathematics-statistics/files/2019/08/Drube2019.pdf">Colored Motzkin Paths of Higher Order</a>, VERUM 2019.
%H A121545 Philippe Leroux, <a href="http://arxiv.org/abs/0709.3453">An equivalence of categories motivated by weighted directed graphs</a>, arXiv:math-ph/0709.3453, 2007-2008.
%F A121545 G.f.: sin^2( (1/3)*arcsin(sqrt(27*x/4)) ) / ( 3/4 + sin^2( (1/3)*arcsin(sqrt(27*x/4)) )).
%F A121545 G.f.: x*G(x)^2 / (1 + x*G(x)^2), where G(x) = 1 + x*G(x)^3 = g.f. of A001764. - _Paul D. Hanna_, Nov 03 2012
%F A121545 From _Gary W. Adamson_, Jul 13 2011: (Start)
%F A121545 As to a signed variant for n > 0: (1, -1, 4, -17, ...), a(n) = upper left term of M^n, M = the following infinite square production matrix:
%F A121545     1,  1,  0,  0,  0,  0, ...
%F A121545    -2, -2,  1,  0,  0,  0, ...
%F A121545     3,  3, -2,  1,  0,  0, ...
%F A121545    -4, -4,  3, -2,  1,  0, ...
%F A121545     5,  5, -4,  3, -2,  1, ...
%F A121545    -6, -6,  5, -4,  3, -2, ...
%F A121545    ...
%F A121545 (each column is (1, -2, 3, -4, 5, ...) prepended with (0, 0, 1, 2, 3, ...) zeros by columns). (End)
%F A121545 Recurrence: 32*n*(2*n-1)*a(n) = 16*(11*n^2 - n - 15)*a(n-1) + 6*(278*n^2 - 1351*n + 1670)*a(n-2) + 45*(3*n-8)*(3*n-7)*a(n-3). - _Vaclav Kotesovec_, Nov 19 2012
%F A121545 a(n) ~ 3^(3*n+1/2)/(2^(2*n+4)*n^(3/2)*sqrt(Pi)). - _Vaclav Kotesovec_, Nov 19 2012
%F A121545 From _Peter Bala_, Feb 04 2022: (Start)
%F A121545 G.f. A(x) = (G(x) - 1)/(2*G(x) - 1), where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.
%F A121545 Let B(x) = 2 + x + 2*x^2 + 6*x^3 + 22*x^4 + 91*x^5 + ... denote the o.g.f. of A000139. Then A(x) = x*C(x)'/C(x), where C(x) = 1 + x*(B(x) - 1).
%F A121545 Equivalently, exp(Sum_{n >= 1} a(n)*x^n/n) = C(x), a power series with integer coefficients. It follows that the Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all prime p and positive integers n and k. (End)
%F A121545 a(n) = (1/n)*Sum_{k=1..n} k*(-1)^(k+1)*C(3*n-k-1,n-k). - _Vladimir Kruchinin_, Oct 09 2022
%F A121545 a(n) = binomial(3*n-2, n-1)*hypergeom([2, 1-n], [2-3*n], -1) / n for n >= 1. - _Peter Luschny_, Oct 09 2022
%p A121545 a := n -> ifelse(n = 0, 0, binomial(3*n - 2, n - 1)*hypergeom([2, 1 - n], [2 - 3*n], -1) / n): seq(simplify(a(n)), n = 0..21); # _Peter Luschny_, Oct 09 2022
%t A121545 CoefficientList[Series[Sin[1/3*ArcSin[Sqrt[27*x/4]]]^2/(3/4 + Sin[1/3*ArcSin[Sqrt[27*x/4]]]^2), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Nov 19 2012 *)
%o A121545 (PARI) {a(n)=local(G=1); if(n<1,0,for(i=1,n,G=1+x*G^3+O(x^(n+1))); polcoeff(x*G^2/(1+x*G^2),n))} \\ _Paul D. Hanna_, Nov 03 2012
%o A121545 (PARI) x='x+O('x^22); concat(0, Vec(serreverse(x*(2*x-1)^2/(1-x)^3))) \\ _Gheorghe Coserea_, Aug 18 2017
%o A121545 (Maxima)
%o A121545 a(n):=sum(k*(-1)^(k+1)*binomial(3*n-k-1,n-k),k,1,n)/n; /* _Vladimir Kruchinin_, Oct 09 2022 */
%Y A121545 Cf. A000139, A006013, A001764.
%K A121545 nonn,easy
%O A121545 0,4
%A A121545 _N. J. A. Sloane_, Oct 07 2007
%E A121545 More terms from _Olivier Gérard_, Oct 11 2007