This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A121548 #23 Oct 10 2022 10:42:45 %S A121548 1,1,1,1,2,1,0,3,3,1,1,2,6,4,1,0,3,7,10,5,1,0,2,9,16,15,6,1,1,2,9,23, %T A121548 30,21,7,1,0,2,10,28,50,50,28,8,1,0,3,9,34,71,96,77,36,9,1,0,2,12,36, %U A121548 95,156,168,112,45,10,1,0,0,12,43,115,231,308,274,156,55,11,1,1,2,9,48,140,312,504,560,423,210,66,12,1 %N A121548 Triangle read by rows: T(n,k) is the number of compositions of n into k Fibonacci numbers (1 <= k <= n; only one 1 is considered as a Fibonacci number). %H A121548 Alois P. Heinz, <a href="/A121548/b121548.txt">Rows n = 0..150, flattened</a> %F A121548 G.f.: G(t,z) = 1 / (1 - t*Sum_{i>=2} z^Fibonacci(i)) - 1. %F A121548 Sum of terms in row n = A076739(n). %F A121548 T(n,1) = A010056(n) (the characteristic function of the Fibonacci numbers); %F A121548 T(n,2) = A121549(n); %F A121548 T(n,3) = A121550(n); %F A121548 Sum_{k=1..n} k*T(n,k) = A121551(n). %e A121548 T(5,3)=6 because we have [1,2,2], [2,1,2], [2,2,1], [1,1,3], [1,3,1] and [3,1,1]. %e A121548 Triangle starts: %e A121548 1; %e A121548 1, 1; %e A121548 1, 2, 1; %e A121548 0, 3, 3, 1; %e A121548 1, 2, 6, 4, 1; %e A121548 0, 3, 7, 10, 5, 1; %e A121548 0, 2, 9, 16, 15, 6, 1; %e A121548 ... %p A121548 with(combinat): G:=1/(1-t*sum(z^fibonacci(i),i=2..40))-1: Gser:=simplify(series(G,z=0,25)): for n from 1 to 23 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 1 to 15 do seq(coeff(P[n],t,j),j=1..n) od; # yields sequence in triangular form %p A121548 # second Maple program: %p A121548 g:= proc(n) g(n):= (t-> issqr(t+4) or issqr(t-4))(5*n^2) end: %p A121548 T:= proc(n, t) option remember; %p A121548 `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add( %p A121548 `if`(g(j), T(n-j, t-1), 0), j=1..n))) %p A121548 end: %p A121548 seq(seq(T(n, k), k=1..n), n=1..14); # _Alois P. Heinz_, Oct 10 2022 %t A121548 nmax = 14; %t A121548 T = Rest@CoefficientList[#, t]& /@ Rest@(1/(1 - t*Sum[z^Fibonacci[i], %t A121548 {i, 2, nmax}]) - 1 + O[z]^(nmax+1) // CoefficientList[#, z]&); %t A121548 Table[T[[n, k]], {n, 1, nmax}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, May 02 2022 *) %Y A121548 Cf. A076739, A010056, A121549, A121550, A121551. %Y A121548 T(2n,n) gives A341072. %K A121548 nonn,tabl %O A121548 1,5 %A A121548 _Emeric Deutsch_, Aug 07 2006