A121552 Triangle read by rows: T(n,k) is the number of deco polyominoes of height n and area k (n>=1, k>=1). A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.
1, 0, 2, 0, 0, 4, 2, 0, 0, 0, 8, 8, 6, 2, 0, 0, 0, 0, 16, 24, 28, 26, 16, 8, 2, 0, 0, 0, 0, 0, 32, 64, 96, 120, 126, 110, 82, 52, 26, 10, 2, 0, 0, 0, 0, 0, 0, 64, 160, 288, 432, 564, 658, 680, 638, 542, 416, 284, 172, 90, 38, 12, 2, 0, 0, 0, 0, 0, 0, 0, 128, 384, 800, 1376, 2072
Offset: 1
Examples
Triangle starts: 1; 0,2; 0,0,4,2; 0,0,0,8,8,6,2; 0,0,0,0,16,24,28,26,16,8,2;
References
- E. Barcucci, A. del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
Programs
-
Maple
for n from 1 to 8 do P[n]:=sort(expand(simplify(2*t^n*product(2+sum(t^i,i=1..j),j=1..n-2)))) od: for n from 1 to 8 do seq(coeff(P[n],t,j),j=1..n*(n-1)/2+1) od; # yields sequence in triangular form
Formula
The row generating polynomials are P(1,t)=t and P(n,t)=2t^n*product(2+t+t^2+...+t^j, j=1..n-2) for n>=2.
Comments