cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121553 Total area of all deco polyominoes of height n. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.

Original entry on oeis.org

1, 4, 20, 122, 874, 7164, 65988, 674064, 7558416, 92276640, 1218255840, 17293495680, 262656570240, 4250077896960, 72992067321600, 1326101675673600, 25410150701107200, 512158576546713600, 10832221231772774400
Offset: 1

Views

Author

Emeric Deutsch, Aug 08 2006

Keywords

Comments

a(n)=Sum(k*A121552(n,k), k=n..1+n(n-1)/2).

References

  • E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.

Crossrefs

Cf. A121552.

Programs

  • Maple
    a[1]:=1: for n from 2 to 22 do a[n]:=n*a[n-1]+(n-1)!*(1+n*(n-1)/2) od: seq(a[n],n=1..22);

Formula

a(1)=1; a(n)=n*a(n-1)+(n-1)!*[1+n(n-1)/2] for n>=2 (see Barcucci et al. reference, p. 34).
a(n)=n![n(n-1)/4 + 1/1 + 1/2 + ... +1/n]. - Emeric Deutsch, Apr 06 2008
Conjecture D-finite with recurrence a(n) +(-2*n-3)*a(n-1) +(n^2+4*n-3)*a(n-2) +2*(-n^2+n+3)*a(n-3) +2*(n-3)^2*a(n-4)=0. - R. J. Mathar, Jul 22 2022