A121585 Triangle read by rows: T(n,k) is the number of deco polyominoes of height n and having k 1-cell columns starting at level 0 (0<=k<=n). A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.
1, 0, 1, 1, 0, 1, 3, 1, 1, 1, 12, 5, 3, 3, 1, 60, 27, 14, 12, 6, 1, 360, 168, 83, 62, 36, 10, 1, 2520, 1200, 583, 393, 242, 86, 15, 1, 20160, 9720, 4698, 2941, 1845, 758, 176, 21, 1, 181440, 88200, 42606, 25285, 15856, 7151, 1990, 323, 28, 1, 1814400, 887040
Offset: 0
Examples
T(2,0)=1, T(2,1)=0, T(2,2)=1 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, having, respectively, 0 and 2 columns with exactly 1 cell starting at level 0. Triangle starts: 1; 0,1; 1,0,1; 3,1,1,1; 12,5,3,3,1; 60,27,14,12,6,1;
References
- E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
Programs
-
Maple
P[0]:=1: for n from 1 to 10 do P[n]:=sort(expand((n-1)!+(t+n-2)*P[n-1])) od: for n from 0 to 10 do seq(coeff(P[n],t,j),j=0..n) od; # yields sequence in triangular form
Formula
The row generating polynomials satisfy P(n,t)=(n-1)!+(t+n-2)P(n-1,t) for n>=1 and P(0,t)=1.
Comments