cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121608 Primes that can be written as concatenation of two composite numbers in decimal representation.

This page as a plain text file.
%I A121608 #10 Feb 27 2021 13:43:31
%S A121608 89,109,149,229,269,349,359,389,409,421,433,439,449,457,463,487,491,
%T A121608 499,509,569,659,677,691,709,769,809,821,827,829,839,857,859,863,877,
%U A121608 881,887,919,929,977,991,1009,1021,1033,1039,1049,1051,1063,1069,1087,1091
%N A121608 Primes that can be written as concatenation of two composite numbers in decimal representation.
%H A121608 Michael S. Branicky, <a href="/A121608/b121608.txt">Table of n, a(n) for n = 1..10000</a>
%e A121608 A000040(169) = 1009 = 100*10+9 = A002808(74)*10+A002808(4), therefore 1009 is a term: a(41) = 1009;
%e A121608 A000040(172) = 1021 = 10*100+21 = A002808(5)*100+A002808(12), therefore 1021 is a term: a(42) = 1021.
%o A121608 (Python)
%o A121608 from sympy import isprime
%o A121608 def comp(s): i=int(s); return s[0]!='0' and i > 1 and not isprime(i)
%o A121608 def ok(n):
%o A121608   s = str(n)
%o A121608   for i in range(1, len(s)):
%o A121608     if comp(s[:i]) and comp(s[i:]) and isprime(int(s)): return True
%o A121608 print([m for m in range(1092) if ok(m)]) # _Michael S. Branicky_, Feb 27 2021
%Y A121608 Cf. A105184, A121609, A121610.
%K A121608 nonn,base
%O A121608 1,1
%A A121608 _Reinhard Zumkeller_, Aug 10 2006