cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121629 Finite sum involving signless Stirling numbers of the first kind and the Bell numbers. Appears in the process of normal ordering of n-th power of (a)^2*(a+*a), where a+ and a are boson creation and annihilation operators, respectively.

This page as a plain text file.
%I A121629 #15 Sep 08 2022 08:45:27
%S A121629 1,3,16,121,1179,14026,196783,3177861,58019356,1181098459,26515026561,
%T A121629 650572403218,17316566815441,496889918749251,15288155067806104,
%U A121629 502024850361876481,17522822345606176083,647790109599863145106,25283238154309049107231
%N A121629 Finite sum involving signless Stirling numbers of the first kind and the Bell numbers. Appears in the process of normal ordering of n-th power of (a)^2*(a+*a), where a+ and a are boson creation and annihilation operators, respectively.
%H A121629 G. C. Greubel, <a href="/A121629/b121629.txt">Table of n, a(n) for n = 0..350</a>
%H A121629 K. A. Penson, P. Blasiak, A. Horzela, G. H. E. Duchamp and A. I. Solomon, <a href="http://arxiv.org/abs/0904.0369">Laguerre-type derivatives: Dobinski relations and combinatorial identities</a>, J. Math. Phys. vol. 50, 083512 (2009)
%F A121629 a(n) = Sum_{p=1..n+1} abs(stirling1(n+1,p))*2^(n-p+1)*bell(p-1), n=0,1...
%F A121629 E.g.f.: exp(((1-2*x)^(-1/2))-1)/(1-2*x). - _Vladeta Jovovic_, Aug 13 2006
%F A121629 Recurrence: a(n) = (6*n-5)*a(n-1) - (2*n-3)*(6*n-7)*a(n-2) + 4*(2*n-3)*(n-2)^2*a(n-3). - _Vaclav Kotesovec_, Jun 29 2013
%F A121629 a(n) ~ 2^(n+5/6)*exp(3/2*(2*n)^(1/3)-1-n)*n^(n+1/3)/sqrt(3). - _Vaclav Kotesovec_, Jun 29 2013
%t A121629 CoefficientList[Series[E^(((1-2*x)^(-1/2))-1)/(1-2*x), {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Jun 29 2013 *)
%o A121629 (PARI) x='x+O('x^30); Vec(serlaplace(exp(((1-2*x)^(-1/2))-1)/(1-2*x))) \\ _G. C. Greubel_, May 17 2018
%o A121629 (Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(((1-2*x)^(-1/2))-1)/(1-2*x))); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, May 17 2018
%Y A121629 Cf. A002720, A121630, A121631, A239301.
%K A121629 nonn
%O A121629 0,2
%A A121629 _Karol A. Penson_, Aug 12 2006
%E A121629 Terms a(17) onward added by _G. C. Greubel_, May 17 2018