cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121630 Finite sum involving signless Stirling numbers of the first kind and the Bell numbers. Appears in the process of normal ordering of n-th power of (a)^3*(a+*a), where a+ and a are boson creation and annihilation operators, respectively.

This page as a plain text file.
%I A121630 #11 Mar 14 2014 14:32:24
%S A121630 1,4,29,302,4089,68056,1342949,30635074,792915057,22952573484,
%T A121630 734630159341,25757268041814,981687991859689,40407710444419072,
%U A121630 1786311057929722549,84404172618241446506,4244839086310722228449
%N A121630 Finite sum involving signless Stirling numbers of the first kind and the Bell numbers. Appears in the process of normal ordering of n-th power of (a)^3*(a+*a), where a+ and a are boson creation and annihilation operators, respectively.
%F A121630 a(n)=sum(abs(stirling1(n+1,p))*3^(n-p+1)*bell(p-1),p=1..n+1), n=0,1....
%F A121630 E.g.f.: exp(((1-3*x)^(-1/3))-1)/(1-3*x). - _Vladeta Jovovic_, Aug 13 2006
%F A121630 Recurrence: a(n) = 3*(4*n - 5)*a(n-1) - (54*n^2 - 189*n + 173)*a(n-2) + (108*n^3 - 729*n^2 + 1659*n - 1271)*a(n-3) - 9*(n-3)^2*(3*n - 8)*(3*n - 7)*a(n-4). - _Vaclav Kotesovec_, Mar 14 2014
%F A121630 a(n) ~ 1/2 * 3^(n+7/8) * exp(4*n^(1/4)/3^(3/4) - n - 1) * n^(n+3/8). - _Vaclav Kotesovec_, Mar 14 2014
%t A121630 CoefficientList[Series[E^(((1-3*x)^(-1/3))-1)/(1-3*x), {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Mar 14 2014 *)
%Y A121630 Cf. A002720, A121629, A121631, A239301.
%K A121630 nonn
%O A121630 0,2
%A A121630 _Karol A. Penson_, Aug 12 2006