cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121631 Finite sum involving signless Stirling numbers of the first kind and the Bell numbers. Appears in the process of normal ordering of n-th power of (a)^4*(a+*a), where a+ and a are boson creation and annihilation operators, respectively.

This page as a plain text file.
%I A121631 #13 Mar 14 2014 14:32:51
%S A121631 1,5,46,613,10679,229576,5868715,173833661,5853205468,220767370219,
%T A121631 9219128625851,422221005543250,21041188313139901,1133454896301865073,
%U A121631 65627299232007207934,4064319309355535125201,268077821490093243979235
%N A121631 Finite sum involving signless Stirling numbers of the first kind and the Bell numbers. Appears in the process of normal ordering of n-th power of (a)^4*(a+*a), where a+ and a are boson creation and annihilation operators, respectively.
%F A121631 a(n)=sum(abs(stirling1(n+1,p))*4^(n-p+1)*bell(p-1),p=1..n+1), n=0,1....
%F A121631 E.g.f.: exp(((1-4*x)^(-1/4))-1)/(1-4*x). - _Vladeta Jovovic_, Aug 13 2006
%F A121631 Recurrence: a(n) = 2*(10*n - 17)*a(n-1) - (160*n^2 - 704*n + 811)*a(n-2) + 2*(320*n^3 - 2592*n^2 + 7138*n - 6675)*a(n-3) - (1280*n^4 - 16384*n^3 + 79120*n^2 - 170816*n + 139079)*a(n-4) + 32*(n-4)^2*(2*n - 7)*(4*n - 15)*(4*n - 13)*a(n-5). - _Vaclav Kotesovec_, Mar 14 2014
%F A121631 a(n) ~ 1/sqrt(5) * 2^(2*n+9/5) * exp(5*n^(1/5)/2^(8/5)-n-1) * n^(n+2/5). - _Vaclav Kotesovec_, Mar 14 2014
%t A121631 CoefficientList[Series[E^(((1-4*x)^(-1/4))-1)/(1-4*x), {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Mar 14 2014 *)
%Y A121631 Cf. A002720, A121629, A121630, A239301.
%K A121631 nonn
%O A121631 0,2
%A A121631 _Karol A. Penson_, Aug 12 2006