cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121633 Sum of the bottom levels of the last column over all deco polyominoes of height n. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.

This page as a plain text file.
%I A121633 #13 Jul 26 2022 15:19:41
%S A121633 0,0,1,9,68,527,4408,40303,403046,4393339,51955528,663383135,
%T A121633 9102982354,133668773755,2092209897524,34783032728383,612234346270510,
%U A121633 11375905660965179,222544581264066400,4572536725690159999,98456173247669999978,2217126753620449439515
%N A121633 Sum of the bottom levels of the last column over all deco polyominoes of height n. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.
%C A121633 a(n) = Sum(k*A121632(n,k), k>=0).
%D A121633 E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
%H A121633 Alois P. Heinz, <a href="/A121633/b121633.txt">Table of n, a(n) for n = 1..449</a>
%F A121633 a(1)=0; a(n) = n*a(n-1)+(n-1)!-1 for n>=2.
%F A121633 a(n)= A000254(n)- A002672(n) a(n)= n!*sum(1/k,k=1..10)- floor(n!(e-1)) [From _Gary Detlefs_, Jul 18 2010]
%F A121633 D-finite with recurrence a(n) +(-2*n-1)*a(n-1) +(n^2+2*n-4)*a(n-2) +(-2*n^2+6*n-3)*a(n-3) +(n-3)^2*a(n-4)=0. - _R. J. Mathar_, Jul 26 2022
%e A121633 a(2)=0 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, all of whose columns start at level 0.
%p A121633 a[1]:=0: for n from 2 to 23 do a[n]:=n*a[n-1]+(n-1)!-1 od: seq(a[n],n=1..23);
%t A121633 RecurrenceTable[{a[1]==0,a[n]==n*a[n-1]+(n-1)!-1},a,{n,20}] (* _Harvey P. Dale_, Dec 01 2013 *)
%Y A121633 Cf. A121632, A000254.
%K A121633 nonn
%O A121633 1,4
%A A121633 _Emeric Deutsch_, Aug 12 2006