This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A121668 #11 Jul 11 2021 03:13:43 %S A121668 5,365,105485,47686445,27027984005,17576522979125,12539718106476125, %T A121668 9563891779602510125,7671490770912738387125,6401115462988077760992365, %U A121668 5513180441777884868230908125,4873728705609344219627834043125 %N A121668 Products of consecutive Apery numbers, cf. A006221. %C A121668 The solutions x_{n-1}:=A_nA_{n-1}, y_n of the four-term recurrence relation defined by x_0=5, x_1= 365, x_2= 105485 and y_0= 0, y_1=8424, y_2= 2438709 are such that y_n/x_n -> 16*zeta(3)^2. Generalizations to products of three or more Apery numbers are to be found in the cited paper. %H A121668 Angelo B. Mingarelli, <a href="http://arXiv.org/abs/math.NT/0608577">Recurrence relations and the algebraic irrationality of zeta(3)</a>, arXiv:math.NT/0608577 v1. 23 August, 2006. %F A121668 Recurrence: %F A121668 (n + 3)^3(n + 2)^6(2n + 1)(17n^2 + 17n + 5)z(n + 2) - (2n + 1)(17n^2 + \ %F A121668 17n + 5)(1155n^6 + 13860n^5 + 68535n^4 + 178680n^3 + 259059n^2 + \ %F A121668 198156n + 62531)(n + 2)^3z(n + 1) + (2n + 5)(17n^2 + 85n + 107)(1155n^6 \ %F A121668 + 6930n^5 + 16560n^4 + 20040n^3 + 12954n^2 + 4308n + 584)(n + 1) ^3z(n) \ %F A121668 - n^3(n + 1)^6(2n + 5)(17n^2 + 85n + 107)z(n - 1) = 0 %F A121668 a(n) ~ (1 + sqrt(2))^(8*n) / (2^(9/2) * Pi^3 * n^3). - _Vaclav Kotesovec_, Jul 11 2021 %e A121668 16*y_9/x_9 = 23.11905277493814774261896124285261449340 while %e A121668 16*zeta(3)^2=23.11905277493814774261896126091180523494. %t A121668 Table[Sum[(Binomial[n,k]*Binomial[n + k, k])^2, {k, 0, n}] * Sum[(Binomial[n-1, k] Binomial[n - 1 + k, k])^2, {k, 0, n-1}], {n, 1, 20}] (* _Vaclav Kotesovec_, Jul 11 2021 *) %Y A121668 Cf. A005259, A006221. %K A121668 easy,nonn %O A121668 1,1 %A A121668 Angelo B. Mingarelli (amingare(AT)math.carleton.ca), Sep 10 2006